13 research outputs found

    Alteration to Dopaminergic Synapses Following Exposure to Perfluorooctane Sulfonate (PFOS), in Vitro and in Vivo

    No full text
    Our understanding of the contribution exposure to environmental toxicants has on neurological disease continues to evolve. Of these, Parkinson’s disease (PD) has been shown to have a strong environmental component to its etiopathogenesis. However, work is still needed to identify and characterize environmental chemicals that could alter the expression and function of the nigrostriatal dopamine system. Of particular interest is the neurotoxicological effect of perfluorinated compounds, such as perfluorooctane sulfonate (PFOS), which has been demonstrated to alter aspects of dopamine signaling. Using in vitro approaches, we have elaborated these initial findings to demonstrate the neurotoxicity of PFOS to the SH-SY5Y neuroblastoma cell line and dopaminergic primary cultured neurons. Using an in vivo model, we did not observe a deficit to dopaminergic terminals in the striatum of mice exposed to 10 mg/kg PFOS for 14 days. However, subsequent exposure to the selective dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) significantly reduced the expression of dopamine transporter (DAT) and tyrosine hydroxylase (TH), and resulted in an even greater reduction in DAT expression in animals previously exposed to PFOS. These findings suggest that PFOS is neurotoxic to the nigrostriatal dopamine circuit and this neurotoxicity could prime the dopamine terminal to more extensive damage following additional toxicological insults

    Assessing Vesicular Monoamine Transport and Toxicity Using Fluorescent False Neurotransmitters

    No full text
    This manuscript outlines a high-throughput 96-well plate assay to measure the vesicular uptake of the false fluorescent neurotransmitter FFN206 by the vesicular monoamine transporter 2 (VMAT2) in near real-time and following pharmacological and environmental toxicant exposure in HEK293 cells

    Assessing reproductive toxicity of two environmental toxicants with a novel in vitro human spermatogenic model

    Get PDF
    AbstractEnvironmental influences and insults by reproductive toxicant exposure can lead to impaired spermatogenesis or infertility. Understanding how toxicants disrupt spermatogenesis is critical for determining how environmental factors contribute to impaired fertility. While current animal models are available, understanding of the reproductive toxic effects on human fertility requires a more robust model system. We recently demonstrated that human pluripotent stem cells can differentiate into spermatogonial stem cells/spermatogonia, primary and secondary spermatocytes, and haploid spermatids; a model that mimics many aspects of human spermatogenesis. Here, using this model system, we examine the effects of 2-bromopropane (2-BP) and 1,2,dibromo-3-chloropropane (DBCP) on in vitro human spermatogenesis. 2-BP and DBCP are non-endocrine disrupting toxicants that are known to impact male fertility. We show that acute treatment with either 2-BP or DBCP induces a reduction in germ cell viability through apoptosis. 2-BP and DBCP affect viability of different cell populations as 2-BP primarily reduces spermatocyte viability, whereas DBCP exerts a much greater effect on spermatogonia. Acute treatment with 2-BP or DBCP also reduces the percentage of haploid spermatids. Both 2-BP and DBCP induce reactive oxygen species (ROS) formation leading to an oxidized cellular environment. Taken together, these results suggest that acute exposure with 2-BP or DBCP causes human germ cell death in vitro by inducing ROS formation. This system represents a unique platform for assessing human reproductive toxicity potential of various environmental toxicants in a rapid, efficient, and unbiased format

    Ubiquitous Flame-Retardant Toxicants Impair Spermatogenesis in a Human Stem Cell Model

    No full text
    Summary: Sperm counts have rapidly declined in Western males over the past four decades. This rapid decline remains largely unexplained, but exposure to environmental toxicants provides one potential explanation for this decline. Flame retardants are highly prevalent and persistent in the environment, but many have not been assessed for their effects on human spermatogenesis. Using a human stem cell-based model of spermatogenesis, we evaluated two major flame retardants, hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA), under acute conditions simulating occupational-level exposures. Here we show that HBCDD and TBBPA are human male reproductive toxicants in vitro. Although these toxicants do not specifically affect the survival of haploid spermatids, they affect spermatogonia and primary spermatocytes through mitochondrial membrane potential perturbation and reactive oxygen species generation, ultimately causing apoptosis. Taken together, these results show that HBCDD and TBBPA affect human spermatogenesis in vitro and potentially implicate this highly prevalent class of toxicants in the decline of Western males' sperm counts. : Flame Retardant; Toxicology; Male Reproductive Endocrinology; Stem Cells Research Subject Areas: Flame Retardant, Toxicology, Male Reproductive Endocrinology, Stem Cells Researc

    Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model

    No full text
    <p>Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic chemicals used in products ranging from water and oil repellents and lubricants to firefighting foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of people assessed. Though animal models strongly identify these compounds as male reproductive toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and DNA damage in spermatids, among other adverse outcomes, human studies report conflicting conclusions as to the reproductive toxicity of these chemicals. Using an innovative, human stem-cell-based model of spermatogenesis, we assessed the effects of the PFASs perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and a mixture of PFOS, PFOA, and PFNA for their impacts on human spermatogenesis <i>in vitro</i> under conditions relevant to the general and occupationally exposed populations. Here, we show that PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and PFNA do not decrease <i>in vitro</i> germ cell viability, consistent with reports from human studies. These compounds do not affect mitochondrial membrane potential or increase reactive oxygen species generation, and they do not decrease cell viability of spermatogonia, primary spermatocytes, secondary spermatocytes, or spermatids <i>in vitro</i> under the conditions examined. However, exposure to PFOS, PFOA, and PFNA reduces expression of markers for spermatogonia and primary spermatocytes. While not having direct effects on germ cell viability, these effects suggest the potential for long-term impacts on male fertility through the exhaustion of the spermatogonial stem cell pool and abnormalities in primary spermatocytes.</p> <p><b>Abbreviations:</b> CDC: Centers for Disease Control; DMSO: dimethyl sulfoxide; GHR: growth hormone receptor; hESCs: human embryonic stem cells; PFASs: per- and polyfluoroalkyl substances; PFCs: perfluorinated compounds; PFNA: perfluorononanoic acid; PFOS: perfluorooctanesulfonic acid; PFOA: perfluorooctanoic acid; PLZF: promyelocytic leukemia zinc finger; ROS: reactive oxygen species; HILI: RNA-mediated gene silencing 2; SSC: spermatogonial stem cell</p

    Small-molecule targeting of brachyury transcription factor addiction in chordoma

    No full text
    Chordoma is a primary bone cancer with no approved therapy . The identification of therapeutic targets in this disease has been challenging due to the infrequent occurrence of clinically actionable somatic mutations in chordoma tumors . Here we describe the discovery of therapeutically targetable chordoma dependencies via genome-scale CRISPR-Cas9 screening and focused small-molecule sensitivity profiling. These systematic approaches reveal that the developmental transcription factor T (brachyury; TBXT) is the top selectively essential gene in chordoma, and that transcriptional cyclin-dependent kinase (CDK) inhibitors targeting CDK7/12/13 and CDK9 potently suppress chordoma cell proliferation. In other cancer types, transcriptional CDK inhibitors have been observed to downregulate highly expressed, enhancer-associated oncogenic transcription factors . In chordoma, we find that T is associated with a 1.5-Mb region containing 'super-enhancers' and is the most highly expressed super-enhancer-associated transcription factor. Notably, transcriptional CDK inhibition leads to preferential and concentration-dependent downregulation of cellular brachyury protein levels in all models tested. In vivo, CDK7/12/13-inhibitor treatment substantially reduces tumor growth. Together, these data demonstrate small-molecule targeting of brachyury transcription factor addiction in chordoma, identify a mechanism of T gene regulation that underlies this therapeutic strategy, and provide a blueprint for applying systematic genetic and chemical screening approaches to discover vulnerabilities in genomically quiet cancers

    Complement 3 and Factor H in Human Cerebrospinal Fluid in Parkinson's Disease, Alzheimer's Disease, and Multiple-System Atrophy

    No full text
    Complement activation, a key component of neuroinflammation, has been reported in both Parkinson's disease (PD) and Alzheimer's disease (AD). However, it is unclear whether complement activation and neuroinflammation in general are distinctly different from each another in major neurodegenerative disorders. In the present study, cerebrospinal fluid complement 3 (C3) and factor H (FH) were measured and evaluated together with amyloid-β42 (Aβ42), which in recent investigations was decreased in patients with PD, in particular those with cognitive impairment. The study included 345 participants: 126 patients with PD at various stages with or without cognitive impairment, 50 with AD, and 32 with multiple-system atrophy, and 137 healthy control individuals. In addition to changes in Aβ42 concentrations, there were clear differences in the patterns of complement profiles among neurodegenerative disorders. The C3/FH ratio demonstrated high sensitivity and specificity in differentiating patients with multiple-system atrophy from those with AD or PD and control individuals. In addition, the C3/Aβ42 and FH/Aβ42 ratios not only correlated with PD severity approximated using the Unified Parkinson's Disease Rating Scale but also with the presence of cognitive impairment or dementia in PD. Both C3 and FH correlated with the severity of impairment in AD as indicated using Mini-Mental State Examination scores

    Genome-scale functional genomics identify genes preferentially essential for multiple myeloma cells compared to other neoplasias

    No full text
    Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies. These genes, some known, others not previously linked to MM, encode transcription factors, chromatin modifiers, endoplasmic reticulum components, metabolic regulators or signaling molecules. Most of these genes are not among the top amplified, overexpressed or mutated in MM. Functional genomics approaches thus define new therapeutic targets in MM not readily identifiable by standard genomic, transcriptional or epigenetic profiling analyses
    corecore