144 research outputs found
A gene cluster in Agrobacterium vitis homologous to polyketide synthase operons is associated with grape necrosis and hypersensitive response induction on tobacco
Here, we identify a cluster of eight genes on chromosome 2 of Agrobacterium vitis that is associated with the ability of the bacterium to cause a hypersensitive response on tobacco and a necrosis of grape shoot explants. Three of these genes share a high level of structural and sequence similarity to clusters of genes in other bacteria that encode the enzymes for biosynthesis of polyketides and long-chain polyunsaturated fatty acids. No similar gene clusters were discovered in sequenced genomes of other members of Rhizobiale
The First Hour of Extra-galactic Data of the Sloan Digital Sky Survey Spectroscopic Commissioning: The Coma Cluster
On 26 May 1999, one of the Sloan Digital Sky Survey (SDSS) fiber-fed
spectrographs saw astronomical first light. This was followed by the first
spectroscopic commissioning run during the dark period of June 1999. We present
here the first hour of extra-galactic spectroscopy taken during these early
commissioning stages: an observation of the Coma cluster of galaxies. Our data
samples the Southern part of this cluster, out to a radius of 1.5degrees and
thus fully covers the NGC 4839 group. We outline in this paper the main
characteristics of the SDSS spectroscopic systems and provide redshifts and
spectral classifications for 196 Coma galaxies, of which 45 redshifts are new.
For the 151 galaxies in common with the literature, we find excellent agreement
between our redshift determinations and the published values. As part of our
analysis, we have investigated four different spectral classification
algorithms: spectral line strengths, a principal component decomposition, a
wavelet analysis and the fitting of spectral synthesis models to the data. We
find that a significant fraction (25%) of our observed Coma galaxies show signs
of recent star-formation activity and that the velocity dispersion of these
active galaxies (emission-line and post-starburst galaxies) is 30% larger than
the absorption-line galaxies. We also find no active galaxies within the
central (projected) 200 h-1 Kpc of the cluster. The spatial distribution of our
Coma active galaxies is consistent with that found at higher redshift for the
CNOC1 cluster survey. Beyond the core region, the fraction of bright active
galaxies appears to rise slowly out to the virial radius and are randomly
distributed within the cluster with no apparent correlation with the potential
merger of the NGC 4839 group. [ABRIDGED]Comment: Accepted in AJ, 65 pages, 20 figures, 5 table
The Atacama Cosmology Telescope: Cosmology from cross-correlations of unWISE galaxies and ACT DR6 CMB lensing
We present tomographic measurements of structure growth using
cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck CMB
lensing maps with the unWISE Blue and Green galaxy samples, which span the
redshift ranges and , respectively. We improve on prior unWISE cross-correlations not just by
making use of the new, high-precision ACT DR6 lensing maps, but also by
including additional spectroscopic data for redshift calibration and by
analysing our measurements with a more flexible theoretical model. An extensive
suite of systematic and null tests within a blind analysis framework ensures
that our results are robust. We determine the amplitude of matter fluctuations
at low redshifts (), finding using the ACT cross-correlation alone and with a combination of Planck and ACT cross-correlations; these
measurements are fully consistent with the predictions from primary CMB
measurements assuming standard structure growth. The addition of Baryon
Acoustic Oscillation data breaks the degeneracy between and
, allowing us to measure from the
cross-correlation of unWISE with ACT and from the
combination of cross-correlations with ACT and Planck. These results also agree
with the expectations from primary CMB extrapolations in CDM
cosmology; the consistency of derived from our two redshift samples
at and provides a further check of our cosmological model.
Our results suggest that structure formation on linear scales is well described
by CDM even down to low redshifts .Comment: 73 pages (incl. 30 pages of appendices), 50 figures, 16 tables, to be
submitted to ApJ. Watch G. S. Farren and A. Krolewski discuss the analysis
and results under https://cosmologytalks.com/2023/09/11/act-unwis
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
The sound of silence:Transgene silencing in mammalian cell engineering
To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.ISSN:2405-472
The Atacama Cosmology Telescope: Mitigating the impact of extragalactic foregrounds for the DR6 CMB lensing analysis
We investigate the impact and mitigation of extragalactic foregrounds for the
CMB lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data
release 6 (DR6) data. Two independent microwave sky simulations are used to
test a range of mitigation strategies. We demonstrate that finding and then
subtracting point sources, finding and then subtracting models of clusters, and
using a profile bias-hardened lensing estimator, together reduce the fractional
biases to well below statistical uncertainties, with the inferred lensing
amplitude, , biased by less than . We also show
that another method where a model for the cosmic infrared background (CIB)
contribution is deprojected and high frequency data from Planck is included has
similar performance. Other frequency-cleaned options do not perform as well,
incurring either a large noise cost, or resulting in biased recovery of the
lensing spectrum. In addition to these simulation-based tests, we also present
null tests performed on the ACT DR6 data which test for sensitivity of our
lensing spectrum estimation to differences in foreground levels between the two
ACT frequencies used, while nulling the CMB lensing signal. These tests pass
whether the nulling is performed at the map or bandpower level. The
CIB-deprojected measurement performed on the DR6 data is consistent with our
baseline measurement, implying contamination from the CIB is unlikely to
significantly bias the DR6 lensing spectrum. This collection of tests gives
confidence that the ACT DR6 lensing measurements and cosmological constraints
presented in companion papers to this work are robust to extragalactic
foregrounds.Comment: Companion paper to Qu et al and Madhavacheril et a
Bayesian jackknife tests with a small number of subsets: Application to HERA 21cm power spectrum upper limits
We present a Bayesian jackknife test for assessing the probability that a data set contains biased subsets, and, if so, which of the subsets are likely to be biased. The test can be used to assess the presence and likely source of statistical tension between different measurements of the same quantities in an automated manner. Under certain broadly applicable assumptions, the test is analytically tractable. We also provide an open-source code, CHIBORG, that performs both analytic and numerical computations of the test on general Gaussian-distributed data. After exploring the information theoretical aspects of the test and its performance with an array of simulations, we apply it to data from the Hydrogen Epoch of Reionization Array (HERA) to assess whether different sub-seasons of observing can justifiably be combined to produce a deeper 21 cm power spectrum upper limit. We find that, with a handful of exceptions, the HERA data in question are statistically consistent and this decision is justified. We conclude by pointing out the wide applicability of this test, including to CMB experiments and the H0 tension
What does an interferometer really measure? Including instrument and data characteristics in the reconstruction of the 21cm power spectrum
Combining the visibilities measured by an interferometer to form a
cosmological power spectrum is a complicated process in which the window
functions play a crucial role. In a delay-based analysis, the mapping between
instrumental space, made of per-baseline delay spectra, and cosmological space
is not a one-to-one relation. Instead, neighbouring modes contribute to the
power measured at one point, with their respective contributions encoded in the
window functions. To better understand the power spectrum measured by an
interferometer, we assess the impact of instrument characteristics and analysis
choices on the estimator by deriving its exact window functions, outside of the
delay approximation. Focusing on HERA as a case study, we find that
observations made with long baselines tend to correspond to enhanced low-k
tails of the window functions, which facilitate foreground leakage outside the
wedge, whilst the choice of bandwidth and frequency taper can help narrow them
down. With the help of simple test cases and more realistic visibility
simulations, we show that, apart from tracing mode mixing, the window functions
can accurately reconstruct the power spectrum estimator of simulated
visibilities. We note that the window functions depend strongly on the
chromaticity of the beam, and less on its spatial structure - a Gaussian
approximation, ignoring side lobes, is sufficient. Finally, we investigate the
potential of asymmetric window functions, down-weighting the contribution of
low-k power to avoid foreground leakage. The window functions presented in this
work correspond to the latest HERA upper limits for the full Phase I data. They
allow an accurate reconstruction of the power spectrum measured by the
instrument and can be used in future analyses to confront theoretical models
and data directly in cylindrical space.Comment: 18 pages, 18 figures, submitted to MNRAS. Comments welcome
Characterization Of Inpaint Residuals In Interferometric Measurements of the Epoch Of Reionization
Radio Frequency Interference (RFI) is one of the systematic challenges
preventing 21cm interferometric instruments from detecting the Epoch of
Reionization. To mitigate the effects of RFI on data analysis pipelines,
numerous inpaint techniques have been developed to restore RFI corrupted data.
We examine the qualitative and quantitative errors introduced into the
visibilities and power spectrum due to inpainting. We perform our analysis on
simulated data as well as real data from the Hydrogen Epoch of Reionization
Array (HERA) Phase 1 upper limits. We also introduce a convolutional neural
network that capable of inpainting RFI corrupted data in interferometric
instruments. We train our network on simulated data and show that our network
is capable at inpainting real data without requiring to be retrained. We find
that techniques that incorporate high wavenumbers in delay space in their
modeling are best suited for inpainting over narrowband RFI. We also show that
with our fiducial parameters Discrete Prolate Spheroidal Sequences (DPSS) and
CLEAN provide the best performance for intermittent ``narrowband'' RFI while
Gaussian Progress Regression (GPR) and Least Squares Spectral Analysis (LSSA)
provide the best performance for larger RFI gaps. However we caution that these
qualitative conclusions are sensitive to the chosen hyperparameters of each
inpainting technique. We find these results to be consistent in both simulated
and real visibilities. We show that all inpainting techniques reliably
reproduce foreground dominated modes in the power spectrum. Since the
inpainting techniques should not be capable of reproducing noise realizations,
we find that the largest errors occur in the noise dominated delay modes. We
show that in the future, as the noise level of the data comes down, CLEAN and
DPSS are most capable of reproducing the fine frequency structure in the
visibilities of HERA data.Comment: 26 pages, 18 figure
Direct Optimal Mapping Image Power Spectrum and its Window Functions
The key to detecting neutral hydrogen during the epoch of reionization (EoR)
is to separate the cosmological signal from the dominating foreground
radiation. We developed direct optimal mapping (Xu et al. 2022) to map
interferometric visibilities; it contains only linear operations, with full
knowledge of point spread functions from visibilities to images. Here we
present an FFT-based image power spectrum and its window functions based on
direct optimal mapping. We use noiseless simulation, based on the Hydrogen
Epoch of Reionization Array (HERA) Phase I configuration, to study the image
power spectrum properties. The window functions show power leakage
from the foreground-dominated region into the EoR window; the 2D and 1D power
spectra also verify the separation between the foregrounds and the EoR.
Furthermore, we simulated visibilities from a -complete array and
calculated its image power spectrum. The result shows that the foreground--EoR
leakage is further suppressed below , dominated by the tapering
function sidelobes; the 2D power spectrum does not show signs of the horizon
wedge. The -complete result provides a reference case for future 21cm
cosmology array designs.Comment: Submitted to Ap
- …