602 research outputs found

    Phenolic Polymer Interactions with Water and Ethylene Glycol Solvents

    Get PDF
    Interactions between pre-cured phenolic polymer chains and a solvent have a significant impact on the structure and properties of the final post-cured phenolic resin. Developing an understanding of the nature of these interactions is important and will aid in the selection of the proper solvent that will lead to the desired final product. Here, we investigate the role of the phenolic chain structure and the solvent type on the overall solvation performance of the system through ab initio techniques and molecular dynamics simulations. Two types of solvents are considered: ethylene glycol (EGL) and H2O. Three phenolic chain structures are considered, including two novolac-type chains with either an ortho-ortho (OON) or an ortho-para (OPN) backbone network and a resole-type (RES) chain with an ortho-ortho network. Each system is characterized through a structural analysis of the solvation shell and the hydrogen-bonding environment as well as through a quantification of the solvation free energy along with partitioned interaction energies between specific molecular species. The combination of simulations and the analyses indicate that EGL provides a higher solvation free energy than H2O due to more energetically favorable hydrophilic interactions as well as favorable hydrophobic interactions between CH element groups. In addition, the phenolic chain structure significantly affects the solvation performance, with OON having limited intermolecular hydrogen-bond formations, while OPN and RES interact more favorably with the solvent molecules. The results suggest that a resole-type phenolic chain with an ortho-para network should have the best solvation performance in EGL, H2O, and other similar solvents

    Phenolic Polymer Solvation in Water and Ethylene Glycol, I: Molecular Dynamics Simulations

    Get PDF
    Interactions between pre-cured phenolic polymer chains and a solvent have a significant impact on the structure and properties of the final post-cured phenolic resin. Developing an understanding of the nature of these interactions is important and will aid in the selection of the proper solvent that will lead to the desired final product. Here, we investigate the role of phenolic chain structure and solvent type on the overall solvation performance of the system through molecular dynamics simulations. Two types of solvents are considered, ethylene glycol (EGL) and H2O. In addition, three phenolic chain structures were considered including two novolac-type chains with either an ortho-ortho (OON) or ortho-para (OPN) backbone network and a resole-type (RES) chain with an ortho-ortho network. Each system is characterized through structural analysis of the solvation shell and hydrogen bonding environment as well as through quantification of the solvation free energy along with partitioned interaction energies between specific molecular species. The combination of the simulations and analyses indicate that EGL provides a larger solvation free energy than H2O due to more energetically favorable hydrophilic interactions as well as favorable hydrophobic interactions between CH element groups. In addition, phenolic chain structure significantly impacts solvation performance with OON having limited intermolecular hydrogen bond formations while OPN and RES interact more favorably with the solvent molecules. The results suggest that a resole-type phenolic chain with an ortho-para network should have the best solvation performance in EGL, H2O, and other similar solvents

    DNA Damage Response and Repair: Insights into Strategies for Radiation Sensitization

    Get PDF
    The incorporation of radiotherapy into multimodality treatment plans has led to significant improvements in glioma patient survival. However, local recurrence from glioma resistance to ionizing radiation remains a therapeutic challenge. The tumoricidal effect of radiation therapy is largely attributed to the induction of dsDNA breaks (DSBs). In the past decade, there have been tremendous strides in understanding the molecular mechanisms underlying DSB repair. The identification of gene products required for DSB repair has provided novel therapeutic targets. Recent studies revealed that many US FDA-approved cancer agents inhibit DSB repair by interacting with repair proteins. This article will aim to provide discussion of DSB repair mechanisms to provide molecular targets for radiation sensitization of gliomas and a discussion of FDA-approved cancer therapies that modulate DSB repair to highlight opportunities for combination therapy with radiotherapy for glioma therapy

    Intracranial application of IMRT based radiosurgery to treat multiple or large irregular lesions and verification of infra-red frameless localization system

    Get PDF
    We have employed a frameless localization system for intracranial radiosurgery, utilizing a custom biteblock with fiducial markers and an infra-red camera for set-up and monitoring patient position. For multiple brain metastases or large irregular lesions, we use a single-isocenter intensity-modulated approach. We report our quality assurance measurements and our experience using Intensity Modulated Radiosurgery (IMRS) to treat such intracranial lesions. A phantom with integrated targets and fiducial markers was utilized to test the positional accuracy of the system. The frameless localization system was used for patient setup and target localization as well as for motion monitoring during treatment. Inverse optimization planning gave satisfactory dose coverage and critical organ sparing. Patient setup was guided by the infrared camera through fine adjustment in three translational and three rotational degrees for isocenter localization and verified by orthogonal kilovoltage (kV) images, taken before treatment to ensure the accuracy of treatment. The relative localization of the camera based system was verified to be highly accurate along three translational directions of couch motion and couch rotation. After verification, we began treating patients with this technique. About 8ā€“12 properly selected fixed beams with a single isocenter were sufficient to achieve good dose coverage and organ sparing. Portal dosimetry with an Electronic Portal Imaging Device (EPID) and kV images provided excellent quality assurance for the IMRS plan and patient setup. The treatment time was less than 60Ā min to deliver doses of 16ā€“20Ā Gy in a single fraction. The camera-based system was verified for positional accuracy and was deemed sufficiently accurate for stereotactic treatments. Single isocenter IMRS treatment of multiple brain metastases or large irregular lesions can be done within an acceptable treatment time and gives the benefits of dose-conformity and organ-sparing, easy plan QA, and patient setup verification

    Longitudinal MRI evidence for decreased survival among periventricular glioblastoma

    Get PDF
    While the prognosis of patients with glioblastoma (GBM) remains poor despite recent therapeutic advances, variable survival times suggest wide variation in tumor biology and an opportunity for stratified intervention. We used volumetric analysis and morphometrics to measure the spatial relationship between subventricular zone (SVZ) proximity and survival in a cohort of 39 newly diagnosed GBM patients. We collected T2-weighted and gadolinium-enhanced T1-weighted magnetic resonance images (MRI) at pre-operative, post-operative, pre-radiation therapy, and post-radiation therapy time points, measured tumor volumes and distances to the SVZ, and collected clinical data. Univariate and multivariate Cox regression showed that tumors involving the SVZ and tumor growth rate during radiation therapy were independent predictors of shorter progression-free and overall survival. These results suggest that GBMs in close proximity to the ependymal surface of the ventricles convey a worse prognosis-an observation that may be useful for stratifying treatment

    Yield and Failure Behavior Investigated for Cross-linked Phenolic Resins Using Molecular Dynamics

    Get PDF
    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on the glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission

    Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Get PDF
    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis

    Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI] and [EMIM][BF4]

    Get PDF
    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-Nbutylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-Npropylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of x(sub Li) we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing x(sub Li), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of x(sub Li) is approximately 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 - 0.3 mS/cm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular)
    • ā€¦
    corecore