115 research outputs found

    Catalysing People-powered Energy in Yorkshire and the Humber

    Get PDF

    Intraspecific variation reshapes coral assemblages under elevated temperature and acidity

    Get PDF
    Funding information: National Science Foundation (USA) (Grant Number(s): 1948946), Leverhulme Trust (Grant Number(s): ECF-2021-512), Australian Research Council (Grant Number(s): DE180100746).Insights into assemblages that can persist in extreme environments are still emerging. Ocean warming and acidification select against species with low physiological tolerance (trait-based ‘filtering’). However, intraspecific trait variation can promote species adaptation and persistence, with potentially large effects on assemblage structure. By sampling nine coral traits (four morphological, four tissue and one skeletal) along an offshore–inshore gradient in temperature and pH, we show that distantly related coral species undergo consistent intraspecific changes as they cross into warm, acidic environment. Intraspecific variation and species turnover each favoured colonies with greater tissue biomass, higher symbiont densities and reduced skeletal investments, indicating strong filtering on colony physiology within and across species. Physiological tissue traits were highly variable within species and were independent of morphology, enabling morphologically diverse species to cross into sites of elevated temperature and acidity. Widespread intraspecific change can therefore counter the loss of biodiversity and morphological structure across a steep environmental gradient.Publisher PDFPeer reviewe

    Introducing the GEV Activation Function for Highly Unbalanced Data to Develop COVID-19 Diagnostic Models

    Get PDF
    Fast and accurate diagnosis is essential for the efficient and effective control of the COVID-19 pandemic that is currently disrupting the whole world. Despite the prevalence of the COVID-19 outbreak, relatively few diagnostic images are openly available to develop automatic diagnosis algorithms. Traditional deep learning methods often struggle when data is highly unbalanced with many cases in one class and only a few cases in another; new methods must be developed to overcome this challenge. We propose a novel activation function based on the generalized extreme value (GEV) distribution from extreme value theory, which improves performance over the traditional sigmoid activation function when one class significantly outweighs the other. We demonstrate the proposed activation function on a publicly available dataset and externally validate on a dataset consisting of 1,909 healthy chest X-rays and 84 COVID-19 X-rays. The proposed method achieves an improved area under the receiver operating characteristic (DeLong's p-value < 0.05) compared to the sigmoid activation. Our method is also demonstrated on a dataset of healthy and pneumonia vs. COVID-19 X-rays and a set of computerized tomography images, achieving improved sensitivity. The proposed GEV activation function significantly improves upon the previously used sigmoid activation for binary classification. This new paradigm is expected to play a significant role in the fight against COVID-19 and other diseases, with relatively few training cases available

    Variation in pre-PCR processing of FFPE samples leads to discrepancies in BRAF and EGFR mutation detection: a diagnostic RING trial.

    Get PDF
    Aims Mutation detection accuracy has been described extensively; however, it is surprising that pre-PCR processing of formalin-fixed paraffin-embedded (FFPE) samples has not been systematically assessed in clinical context. We designed a RING trial to (i) investigate pre-PCR variability, (ii) correlate pre-PCR variation with EGFR/BRAF mutation testing accuracy and (iii) investigate causes for observed variation. Methods 13 molecular pathology laboratories were recruited. 104 blinded FFPE curls including engineered FFPE curls, cell-negative FFPE curls and control FFPE tissue samples were distributed to participants for pre-PCR processing and mutation detection. Follow-up analysis was performed to assess sample purity, DNA integrity and DNA quantitation. Results Rate of mutation detection failure was 11.9%. Of these failures, 80% were attributed to pre-PCR error. Significant differences in DNA yields across all samples were seen using analysis of variance (p<0.0001), and yield variation from engineered samples was not significant (p=0.3782). Two laboratories failed DNA extraction from samples that may be attributed to operator error. DNA extraction protocols themselves were not found to contribute significant variation. 10/13 labs reported yields averaging 235.8ng (95% CI 90.7 to 380.9) from cell-negative samples, which was attributed to issues with spectrophotometry. DNA measurements using Qubit Fluorometry demonstrated a median fivefold overestimation of DNA quantity by Nanodrop Spectrophotometry. DNA integrity and PCR inhibition were factors not found to contribute significant variation. Conclusions In this study, we provide evidence demonstrating that variation in pre-PCR steps is prevalent and may detrimentally affect the patient's ability to receive critical therapy. We provide recommendations for preanalytical workflow optimisation that may reduce errors in down-stream sequencing and for next-generation sequencing library generation

    Counting with Adaptive Auxiliary Learning

    Get PDF
    This paper proposes an adaptive auxiliary task learning based approach for object counting problems. Unlike existing auxiliary task learning based methods, we develop an attention-enhanced adaptively shared backbone network to enable both task-shared and task-tailored features learning in an end-to-end manner. The network seamlessly combines standard Convolution Neural Network (CNN) and Graph Convolution Network (GCN) for feature extraction and feature reasoning among different domains of tasks. Our approach gains enriched contextual information by iteratively and hierarchically fusing the features across different task branches of the adaptive CNN backbone. The whole framework pays special attention to the objects' spatial locations and varied density levels, informed by object (or crowd) segmentation and density level segmentation auxiliary tasks. In particular, thanks to the proposed dilated contrastive density loss function, our network benefits from individual and regional context supervision in terms of pixel-independent and pixel-dependent feature learning mechanisms, along with strengthened robustness. Experiments on seven challenging multi-domain datasets demonstrate that our method achieves superior performance to the state-of-the-art auxiliary task learning based counting methods. Our code is made publicly available at: https://github.com/smallmax00/Counting_With_Adaptive_Auxiliar
    • …
    corecore