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Abstract 
Prognostic models in the context of health are a class of clinical prediction model 

which aim to predict the future outcome of a disease or condition. These models are 

essential in planning treatment and the allocation of resources. Prognostic models 

can ensure that treatment is delivered only when needed. Many such models have 

been developed using traditional statistical methods, such as logistic regression and 

proportional hazards. Some are routinely used in clinic. Traditional methods rely on 

the relevant variables being known and easy to extract; variables or features are 

often difficult or even impossible to extract, especially when imaging is used. Deep 

learning methods can automatically extract relevant features from the image. These 

methods have been used extensively on classification problems, detecting diseases 

from imaging data; however, they are less common for prognostic modelling, 

especially when using longitudinal data.  

In this thesis, I explore how deep learning can be used to develop prognostic models 

to predict the future course of disease using longitudinal data. After reviewing the 

previous methods and discussing their limitations, I develop novel methods which 

aim to be more accurate and clinically useful than previous methods. Throughout the 

thesis, I demonstrate the novel methods using colour fundus images of patients with 

age-related macular degeneration. I evaluated my models using current best 

practices for clinical prediction models. In real-world settings, the time interval 

between visits is unlikely to be the same each time; therefore, I present a method to 

account for uneven intervals between visits. I show results for one, two, and three 

time points to assess the added utility of additional time points and conclude that a 

single time point is sufficient in this situation. Finally, I develop deep survival models 

and present a method that accounts for both uneven time intervals and missing visits 

through a novel mixed-effects layer. I also show how clinical data can be 

incorporated into the model, although this does not significantly improve the 

performance. Unfortunately, all my developed models show poor calibration and 

require adjustment before being deployed in a clinical setting. This highlights the 

importance of assessing and revising the calibration of clinical prediction models. 

The methods presented in this thesis may be used in developing prognostic 

algorithms helping to deliver personalised healthcare. 
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Chapter 1: Introduction 

1.1 Background 

Prognostic models are clinical prediction models that predict the future outcome of a 

disease or condition based on a patient's current or past state or condition.1 

Examples of prognostic models currently in clinical use include the APGAR score,2 

the Framingham risk score,3 and the Liverpool uveal melanoma prognosticator 

online (LUMPO)4. These models provide a useful tool in planning treatment and the 

allocation of resources.  

Imaging data is routinely collected in clinics to monitor the progression of various 

diseases. Images can contain large amounts of information which may be useful in 

determining a patient's current or possible future state. Prognostic models utilising 

these routinely collected images may aid clinicians in making informed decisions 

about patient treatment and care. 

There is a growing interest in developing and applying prognostic models due to the 

increasing amount of data available to clinicians. A combination of ever-growing 

numbers of people with chronic disease 5 and diagnostic tests 6 provides clinicians 

with an overwhelming wealth of information. The number of people on waiting lists 

for diagnostic tests has also been steadily increasing for the past 15 years.6 

Ophthalmology, in particular, is one area with increasingly large amounts of high-

resolution imaging data. 

Prognostic models are attractive to clinicians as they can utilise this abundance of 

data to predict the outcome of disease or response to treatment. These models can 

potentially reduce strain on clinicians by helping with the efficient allocation of 

resources. Knowing when a patient is likely to progress reduces the need for 

frequent diagnostic tests. For example, if clinicians can predict when a patient 

progresses from early/intermediate to advanced age-related macular degeneration 

(AMD), treatment could be planned and administered appropriately to prevent further 

sight loss. 

However, the variables or features contained in images are often highly variable and 

difficult or time-consuming to extract; this makes quantifying variables for use in 
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traditional statistical models challenging.  Deep learning can automatically extract 

useful features from images without requiring time-consuming and challenging 

manual intervention; this makes it particularly suited to imaging data. As a result, 

prognostic models developed using deep learning may improve patient care while 

reducing strain on clinicians. 

Although many well-known models are commonly used in clinical settings,7 many 

more fail to be adopted. There are several reasons that a deep learning model may 

fail to be adopted. Firstly, many developed models lack robust reporting and 

validation. Secondly, complex models are difficult to interpret and understand, 

leading to distrust by patients and clinicians. A study by Longoni et al.8 found that 

patients are less likely to trust AI due to “uniqueness neglect”, believing the AI is less 

able to understand the unique case of each individual patient. Patients who perceive 

themselves as more unique are more likely to distrust AI. However, patients are 

more likely to trust the AI if it is presented as personalised or only used to support 

decision-making. Looking at previous technological revolutions, the internet drove 

another major shift in patient healthcare. It has been observed that patients became 

more trusting of the internet as a source of medical information, although clinicians 

remained the most trusted source.9 As AI becomes more prominent in everyday life, 

we may see a shift towards acceptance of medical AI in a similar way to the 

acceptance of the internet. 

To overcome distrust in AI, best practice guidelines for developing and reporting 

prediction models should be followed.10 Throughout this thesis, I aim to follow these 

guidelines to assess the true usefulness of the models. Models also need to be 

better explained to reduce their black-box nature. Overcoming these issues will allow 

many more complex models to be adopted in clinical settings. 

1.2 Motivation 

One of the biggest sources of valuable data captured in a clinical setting is imaging 

data. Images contain a wealth of information about the current state of a patient; 

however, extracting that information can often be difficult and time-consuming. While 

demographic and clinical data such as age, blood glucose and blood pressure are 

often easy to measure and represent with a numerical value, imaging features such 

as area, volume, and pigment changes can be much more difficult for clinicians to 
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quantify. Furthermore, the relevant features of a disease in an image may even be 

unknown. Prognostic models that can automatically extract useful information from 

images and give a probability of progression could benefit clinicians looking to utilise 

the vast amounts of imaging data available. 

Traditional statistical prognostic methods rely on us being able to accurately quantify 

these imaging features, which may not always be possible. Deep learning allows us 

to extract relevant features from models automatically. For example, several risk 

factors for progression to advanced AMD are commonly reported; however, the 

strength of association is quite varied.11 For example, AMD was previously 

associated erroneously with optic disc pallor12. Image characteristics such as subtle 

colour changes are often difficult to detect and quantify. 

1.3 Aims and objectives 

In this thesis, I aim to present the development of novel methods to predict the future 

progression of disease using longitudinal images. Any useful model must overcome 

a few challenges to make it clinically practical. Imaging data poses a significant 

challenge in traditional statistics as the variables must be extracted from the image 

before being fed into a model. This can be time-consuming or even impossible when 

the important variables of the image are difficult to quantify or even unknown. Deep 

learning can automatically extract these variables or features. 

Therefore, the central aim is to develop a deep learning methodology to create 

models which predict progression of a disease or condition at any time point, using 

longitudinal images while accounting for uneven time intervals, missing images, and 

right-censored data. 

1.4 Contributions 

The main contributions of my work presented in this thesis are: 

• I have developed a novel interval scaling method, allowing for uneven time 

intervals between patient visits. This allows for more clinical utility and means 

that one model can be used no matter the visit or screening interval. 

• I have implemented mixed-effects in deep learning to account for the 

relationship between images. This provides an alternative to simply 
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concatenating features when multiple images are used and allows for better 

modelling of the random effects. In addition, missing images can be 

accounted for using this model. 

• I have developed a joint mixed-effects and survival model to create prognostic 

models for deep learning. This combines deep learning feature extraction by a 

CNN with a traditional statistical model, allowing us to make inferences about 

the underlying distribution, such as how the risk of progression increases with 

time. 

1.5 Publications 

The following published papers have resulted from the work presented here: 

• Bridge, J., Harding, S., & Zheng, Y. (2020). Development and validation of a 

novel prognostic model for predicting AMD progression using longitudinal 

fundus images. BMJ Open Ophthalmology, 5(1), e000569. 

• Bridge, J., Harding, S., & Zheng, Y. (2021, July). End-to-end deep learning 

vector autoregressive prognostic models to predict disease progression with 

uneven time intervals. In Annual Conference on Medical Image 

Understanding and Analysis (pp. 517-531). Springer, Cham. 

• Bridge, J., Meng, Y., Zhao, Y., Du, Y., Zhao, M., Sun, R., & Zheng, Y. (2020). 

Introducing the GEV activation function for highly unbalanced data to develop 

COVID-19 diagnostic models. IEEE Journal of Biomedical and Health 

Informatics, 24(10), 2776-2786. 

• Bridge, J., Meng, Y., Zhu, W., Fitzmaurice, T., McCann, C., Addison, C., 

Wang, M., Merritt, C,. Franks, S,. Mackey, M,. Sun, R,. Zhao, Y,. & Zheng, Y. 

(2022). Development and external validation of a mixed-effects deep learning 

model to diagnose COVID-19 from CT imaging. medRxiv. 

1.6 Thesis structure 

The thesis is set out as follows: In Chapter 2, I present a literature review of 

prognostic modelling and deep learning, focusing on AMD. In Chapter 3, I describe 

the datasets I used in the thesis to demonstrate the developed methodologies. My 

first models are presented in Chapter 4, with a novel interval scaling mechanism 

used to achieve one of the main objectives. In Chapter 5, I introduce a novel method 
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to account for missing data. I present my final model accounting for missing and 

right-censored data in Chapter 6 and apply the model to the AREDS data. Finally, in 

Chapter 7, I review and discuss the thesis and present my conclusions. 
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Chapter 2: Literature review 

In this chapter, I present a brief overview of the field when writing this thesis. I begin 

with an introduction to clinical prediction models highlighting the differences between 

diagnostic and prognostic model research. Next, I outline the measures used to 

assess the performance of clinical prediction models. I then outline computer vision 

and how artificial intelligence interprets and analyses imaging data. Then, I describe 

and discuss deep learning and its applications to image classification tasks, focusing 

on convolutional neural networks (CNNs). Section 2.5 gives a brief overview of Age-

related Macular Degeneration (AMD), which is used to demonstrate the methods that 

I have developed in Chapters 4 and 6. Finally, I briefly review and critically appraise 

the key literature for prognostic models, mainly focusing on deep learning and AMD 

prognosis. 

2.1 Clinical prediction models 

Clinical prediction models fall into two main categories, diagnostic and prognostic.10 

While there is considerable overlap in the theory and methods underpinning these 

two classes of model, they differ significantly in their aims. Diagnostic models aim to 

predict the current status or condition of a patient. Prognostic models aim to predict 

what the future status or condition is likely to be in the future. This thesis focuses on 

prognostic modelling13; however, a similar methodology can sometimes be applied to 

both problems. I have also developed a diagnostic model to demonstrate how one of 

my novel methods works before using it in a more complex prognostic model.  

Examples of diagnostic models include predicting whether a patient has a particular 

disease or not or predicting the current stage of the disease. These models are quite 

common, both in traditional statistics and machine learning. These models are often 

binary, where only two classes are possible, but they may also be multiclass, where 

we aim to diagnose the patient from a list of possible diseases. 

Examples of prognostic models include predicting whether a patient will progress to 

another stage of disease in the future or even whether a patient will die from a 

disease. However, these models are more challenging to develop and validate and 

are less common than diagnostic models, especially when using deep learning. 
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There are two broad types of models that I have considered in this thesis: 

classification types and survival types. Classification types give a binary outcome of 

future disease, progression, or no progression. Survival models are more 

complicated and give a probability of progression by a specified time point. 

2.2 Performance measures 

When developing a clinical prediction model, three criteria would make a model 

clinically useful: 

1. The model should be able to discriminate between diseases. In prognostic 

models, the model should determine which patients will progress to future 

stages of the disease. 

2. The model should not systematically over- or under-estimate risk, which 

would lead to harmful predictions. For example, a model which 

underestimates risk will lead to patients being denied necessary treatment or 

not being told that it will progress. Conversely, a model which overestimates 

risk will lead to unnecessary treatment, increasing stress on the patient and 

overwhelming clinical services. Both of these should be minimised. 

3. The model should be clinically useful. A clinical prediction model that provides 

no clinical benefit is simply an academic exercise and may be detrimental to 

patients' mental health if they are informed of future outcomes without benefit. 

While the benefit to a patient is not always clear and must usually be 

assessed from a clinical perspective, the clinical benefit compared to other 

models or no model can be assessed numerically in several ways. 

These criteria can be tested by assessing the model's 1. discrimination, 2. 

calibration, and 3. clinical usefulness. 

2.2.1 Binary prediction 

Clinical prediction models are often binary, meaning they only predict two outcomes. 

For example, a model may be developed to diagnose a disease. The outcomes are 

disease or no disease, and the model returns a probability of having the disease. 

2.2.1.1 Discrimination 

Discrimination assesses how well the model discriminates between disease and no 

disease and is the most commonly reported type of performance measure, and 
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these measures are often easy to interpret. When comparing the predicted and 

observed outcomes, a confusion matrix can be constructed showing the true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 

Whether the patient is predicted as positive or negative depends upon the predicted 

probability, with a cut-off of 0.5 commonly used. True positives are when the 

algorithm correctly predicts a positive; true negatives occur when the algorithm 

correctly predicts negative; false positives are when the algorithm predicts positive, 

but the outcome is negative, and false negatives are when the algorithm predicts 

negative, but the outcome is positive. I show a confusion matrix for the binary case in 

Figure 2.1, but this can easily be extended to the multiclass case. 

 

 

Figure 2.1: Confusion matrix for the binary classification case. 

Popular discrimination measures include accuracy, sensitivity, specificity, positive 

predictive value (PPV), negative predictive value (NPV), and area under the receiver 

operating characteristic curve (AUROC). 

False positives can also be called a type I error and occur when overestimating risk. 

On the other hand, false negatives are type II errors when underestimating the risk. 

The simplest and most intuitive performance measure is accuracy, defined as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. (2. 1) 

In simple terms, it is the percentage of predictions that the model got correct. While 

the accuracy is very simple both in terms of calculation and explainability, it is not 
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suitable when classes are imbalanced. For example, if a disease has a prevalence of 

only 1%, then a model can easily attain an accuracy of 99% by always predicting no 

disease. In the real world, data is highly likely to be unbalanced. 

Sensitivity is the proportion of positives predicted as positive, while specificity is the 

proportion of negatives predicted as negative. The sensitivity is given as 

𝑆𝑒𝑛𝑠 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (2. 2) 

and the specificity is 

𝑆𝑝𝑒𝑐 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (2. 3) 

Models with higher specificities have lower type I error rates, and models with higher 

sensitivities have lower type II error rates. 

Sensitivity and specificity are often opposing, and a balance is needed between 

them. A higher sensitivity may be needed in certain settings, while a higher 

specificity may be preferred in others. The sensitivity and specificity can be altered 

by changing the cut-off point; as the cut-off point increases, the sensitivity decreases 

with an increase in specificity. The receiver operating characteristic (ROC) curve 

plots the sensitivity and 1-specificity at different cut-off points. The area under the 

ROC (AUROC) can be used as an overall measure of sensitivity and specificity at 

different cut-off points. An example ROC curve is presented in Figure 2.2. 

The AUROC can be difficult to interpret and may not be the most useful measure for 

assessing the real-world performance. The AUROC gives the performance over all 

thresholds; however, a final threshold must be chosen and used in practice. There 

are situations where sensitivity or specificity may be preferred, and the model with 

the best AUROC may not necessarily be the best overall model. Instead, giving the 

sensitivity and specificity at a range of thresholds is useful to show how the model 

performs in real-world values. Nonetheless, the AUROC can provide useful 

information about the model. 
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Figure 2.2: Example of an ROC curve. Confidence bands can be added. 

It is also important to consider the disease prevalence when considering the model 

performance. The PPV and NPV are linked to the sensitivity and specificity but take 

the disease prevalence into account. The PPV is the number of true positive cases 

divided by the total number of predicted positives 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑆𝑒𝑛𝑠 × 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑆𝑒𝑛𝑠 × 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + (1 − 𝑆𝑝𝑒𝑐) × (1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)
, (2. 4) 

 

Similarly, the NPV is the number of true negatives divided by the total number of 

predicted negatives 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
=

𝑆𝑝𝑒𝑐 × (1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)

𝑆𝑝𝑒𝑐 × (1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) + (1 − 𝑆𝑒𝑛𝑠) × 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒
. (2. 5) 
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Assessing discrimination is essential in predictive modelling; however, good 

discrimination does not guarantee that models provide reliable or useful predictions. 

Even models with excellent discrimination can provide unreliable and unsafe 

predictions with no clinical benefit. 

2.2.1.2 Calibration 

Calibration assesses how well the expected and observed outcomes agree. 

Calibration, described as "the Achilles heel of predictive analytics", is often 

overlooked in machine learning but is vital to assessing a clinical prediction model’s 

safety.14 If the risks are systematically over-or under-estimated, clinicians and 

patients may make incorrect decisions. Models can have excellent discriminative 

performance but poor calibration performance, leading to harmful predictions with 

high confidence. 

Model calibration can be split into four levels: mean calibration, weak calibration, 

moderate calibration, and strong calibration. Each level becomes more stringent than 

the last, with strong calibration described as utopic and impossible to achieve in 

practice.15 

Mean calibration is satisfied if the average predicted risk equals the observed event 

rate, also known as the calibration-in-the-large. Logistic regression can be used to 

assess calibration-in-the-large. However, as the lowest level of calibration, it is not 

enough on its own to determine if the model predictions are over- or under-

estimated. 

Weak calibration is attained when there is no over- or under-estimation of the risks. 

As with mean calibration, logistic calibration can be used to assess weak calibration. 

If the calibration intercept is zero and the calibration slope is 1, the predicted risks 

are neither under- nor over-estimated. Confidence intervals may be constructed to 

reject the claim of weak calibration. 

The model is moderately calibrated if the predicted risks correspond to the observed 

event rates. Moderate calibration can be assessed using flexible calibration curves; 

this often detects miscalibration that may be missed by the logistic framework used 

for mean and weak calibration. The calibration curve plots the predicted probability 

against the observed proportion and can show if the model over or underestimates 

the risk. A well-calibrated model will have a calibration curve which follows the 
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diagonal. Deviation from calibration can be observed across all probabilities; this 

means we can assess whether a model is calibrated around a particular threshold of 

interest. An example of a calibration curve is shown in Figure 2.3. This level of 

calibration is what any clinical prediction model should aim for.  

Strong calibration is similar to moderate calibration in that it requires the predicted 

risks to correspond to the observed risks; however, it adds the additional 

requirement that this must be true for every covariate pattern (pattern observed in 

the matrix of the covariances between variables). Strong calibration requires the true 

model to be known, making this calibration level impossible. 

 

Figure 2.3: An example of a calibration curve. 

2.2.1.3 Clinical usefulness 

Models that are no better than either current models or treat all/none approaches 

provide no benefit to clinicians or patients. Models intended for deployment in clinical 

settings must be able to justify their use. Often the consequences of a false negative 

may be more severe than a false positive and vice versa; this can depend upon the 
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setting, the disease being studied, or even the amount of funding currently available 

and demand for the service. The costs and harms must be quantified to assess the 

optimal threshold at which treatment should be given; however, this can often be 

difficult to quantify and differ between services and settings. Decision curve analysis 

assesses net clinical benefit at a range of thresholds.16 Models can be plotted 

against each other and treat all/none approaches to assess the threshold at which 

each method reaches zero net clinical benefit. A cost-benefit ratio can also be added 

to the graph. An example of a decision curve is shown in Figure 2.4.  

 

Figure 2.4: An example of a decision curve. This model shows improved net benefit 

over the treat-all approach. 

 

2.2.2 Survival model performance 

Classification performance measures and survival performance measures differ 

slightly. Performance measures for survival models need to account for censoring. 

Censoring occurs when the actual event is not observed. There are three main types 
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of censoring: right, left, and interval. The most common type of censoring is right 

censoring, where the patient leaves the study before the event is observed. There 

are many reasons for right censoring, including the patient leaving the study, dying, 

or the study ending before the event is observed. Another type of censoring is left 

censoring when the event has already occurred before the patient is enrolled in the 

study. Finally, interval censoring occurs when the event occurs between two time 

points, but it is unclear exactly when. In this thesis, I only consider right censoring as 

it may be of the most use in my work. 

Performance can be measured across all time points or time-dependent and 

measured at chosen time points. Measuring at specific time points shows how the 

performance degrades over time. Although performance can theoretically be 

measured for any future time point, it should ideally be assessed at clinically relevant 

time points.  

2.2.2.1 Discrimination 

For the assessment of discrimination in survival models, overall performance can be 

measured using Harrell's concordance index (C-index). The right-censored C-index 

generalises the AUROC to censored data. It is easier to define the C-index in terms 

of Somers' 𝐷𝑋𝑌 rank correlation.17 

Given bivariate random variables (𝑋1, 𝑌1) and (𝑋2, 𝑌2) sampled independently from 

the same distribution, then Kendall's tau is given by 

 𝜏(𝑋, 𝑌) = 𝐸[𝑠𝑖𝑔𝑛(𝑋1 − 𝑋2)𝑠𝑖𝑔𝑛(𝑌1 − 𝑌2)]. (2.6) 

This can be extended to account for censoring by introducing censoring indicators 𝑅𝑖 

and 𝑆𝑖, for 𝑋𝑖 and 𝑌𝑖, respectively.17 These indicators are positive for right-censored 

data, negeative for left-censored data, and zero for no censorship. Then, the 

censored sign difference is given by 

 𝑐𝑠𝑖𝑔𝑛(𝑎, 𝑏, 𝑐, 𝑑) = {
1, if 𝑎 > 𝑐 and 𝑏 ≥ 0 ≥ 𝑑,
−1, if 𝑎 < 𝑐 and 𝑏 ≤ 0 ≤ 𝑑,
0, otherwise.

 (2.7) 

The concordance-discordance difference between the two observations (𝑋𝑖, 𝑅𝑖, 𝑌𝑖, 𝑆𝑖) 

and (𝑋𝑗, 𝑅𝑗 , 𝑌𝑗 , 𝑆𝑗) is the product of 𝑐𝑠𝑖𝑔𝑛(𝑋𝑖, 𝑅𝑖 , 𝑋𝑗, 𝑅𝑗) and 𝑐𝑠𝑖𝑔𝑛(𝑌𝑖, 𝑆𝑖, 𝑌𝑗 , 𝑆𝑗). We can 

then redefine Kendall's tau from above for censored data 
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 𝜏(𝑋, 𝑌) = 𝐸[𝑐𝑠𝑖𝑔𝑛(𝑋𝑖, 𝑅𝑖 , 𝑋𝑗, 𝑅𝑗)𝑐𝑠𝑖𝑔𝑛(𝑌𝑖, 𝑆𝑖, 𝑌𝑗 , 𝑆𝑗)]. (2.8) 

Then Somers' 𝐷𝑋𝑌 is defined as 

 𝐷𝑋𝑌 =
𝜏(𝑋, 𝑌)

𝜏(𝑋, 𝑋)
. (2.9) 

The C-index is then given as 

 C-index = (𝐷𝑋𝑌 + 1)/2. (2.10) 

 interpretation of the C-index is similar to the AUROC, with 1 indicating perfect 

concordance, 0 indicating perfect discordance, and 0.5 indicating random 

concordance. The Hmisc package in R contains the rcorr.cens function to calculate 

both the 𝐷𝑋𝑌 and C-index with standard error so that the confidence intervals can be 

constructed. The rcorrp.cens function can compute the U-statistics for testing 

whether one predictor is more concordant than another. 

Assessing the model's discrimination performance across all time points gives a 

valuable overview of how well the model performs; however, performance is likely to 

change depending on how far into the future the model is used to predict. Therefore, 

it is useful to measure performance at specific times. Time-dependent measures 

measure the model performance at specific time points. For example, the 

performance at one, two, and three years could be assessed. A time-dependent 

ROC curve for each time point of interest can be constructed, accounting for right-

censored data. A method proposed by Beyene and Ghouch uses imputation to 

estimate the actual unobserved survival time for censored data and a kernel function 

to smooth the ROC.18 Compared to the previous methods for estimating time-

dependent ROC curves for censored data, their method improved results on a 

simulated dataset. The simulated data also showed that bootstrapping with a sample 

size of 2000 gives a good approximation to the sampling distribution of the estimated 

AUROC. Bootstrapping involves sampling with replacement from the results to 

obtain a sample the same size as the original sample. The performance is then 

calculated. This is repeated many times (often 2000 times), and a distribution of 

2000 model performance measures is obtained. This distribution can then be used to 

obtain confidence intervals of the performance measures. The advantage of 

bootstrapping over other confidence interval construction methods is that symmetry 
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of the distribution is not assumed. I have used their implementation in the cenROC 

package in parts of this thesis. 

2.2.2.2 Calibration 

Calibration curves can be extended to survival models to assess the model 

calibration. Similar to the ROC curves, calibration curves for survival models are 

time-dependent.19 For binary outcomes, the calibration measures the agreement 

between the observed and estimated probabilities of an outcome. For time-to-event 

outcomes, calibration measures the agreement between the observed and estimated 

probabilities of an event occurring within a particular time. Calibration could be 

assessed by stratifying samples into risk categories and fitting a Kaplan-Meier curve 

for each stratum. This stratified approach is not ideal as the risk categories are often 

arbitrary.19 

Smoothed calibration curves can be constructed using Cox-Snell residuals by 

comparing the residuals on the cumulative probability scale against the right-

censored survival time data.20 

2.2.2.3 Clinical usefulness 

Decision curves have been extended to censored data.21 Calculating the net benefit 

becomes problematic when the actual survival time is unknown. Kaplan-Meier 

survival probabilities can estimate the number of true and false positives to estimate 

the net benefit. This may lead to non-monotonic relationships between the predicted 

probabilities and the model sensitivity and specificity;22 however, this does not pose 

a problem for the decision curves. 

2.3 Images 

The research I present in this thesis focuses on using imaging data to predict the 

outcome of disease. Here, I will briefly outline how computers store and analyse 

imaging data. 

2.3.1 Computer vision 

Computer vision (CV) explores how computers can be used to process and analyse 

imaging data and aims to mimic human vision. Examples of computer vision tasks 

include object classification, object detection, and motion analysis. CV is a wide and 

varied field, often involving multidisciplinary groups to tackle problems as diverse as 
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disease detection, self-driving vehicles, and facial recognition. Deep learning is often 

used in CV as it provides methods for the automated analysis of images. 

2.3.2 Digital images 

Digital images are often stored as matrices of pixel values; these matrices are known 

as channels. For example, greyscale image pixels take values between 0 and 255, 

with 0 being black, 255 being white, and values in between being different shades of 

grey. Colour images are formed by combining different matrices. One of the most 

common methods to store colour images is using red, green, and blue channels, 

known as the RGB colour model. This trichromatic system is based upon the three 

types of cones found in the retina (short, medium, and long)23 24. Combining these 

three channels, each with 256 possible pixel values, we can store over 16 million 

different colours. An example of an image broken down into its red, green, and blue 

channels can be seen in Figure 2.5. 

2.3.3 Image augmentation 

When using imaging data for deep learning, we augment the data using various 

transformations during training. These augmentations make the algorithm more 

robust to unseen images and reduce overfitting, although data augmentation is not 

as good as collecting additional data. Typical image augmentations include adjusting 

image brightness, rotating the image, zooms, flips, and mirrors. Examples of these 

augmentations are shown in Figure 2.6. Images are also often resized, and pixel 

values are normalised between 0 and 1 before being used in a deep learning model. 
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Figure 2.5: Example image showing the original image (top left) and the image 

broken down into red, green, and blue channels. 

 



28 
 

 

Figure 2.6: Various image augmentations performed upon the same image. 

2.4 Deep learning 

Deep learning is a subset of machine learning characterised by large networks of 

many layers25. There are several types of deep learning, including deep neural 

networks (DNNs) and deep reinforcement learning. Here I concentrate on DNNs. 

Although neural networks were first proposed in the 1960s, they have only gained 

widespread adoption in image applications from around 2010 due to increased 

computational resources26. Deep learning has been applied to various tasks, 

including image analysis, language processing, drug discovery, and self-driving cars. 

Several layers are used concurrently in deep learning to form a network; after each 

layer, an activation is placed to alter the layer's output. The first layer in a neural 

network is known as the input layer, the final layer is known as the output layer, and 

the intermediate layers are known as hidden layers as we do not observe them. 

Each layer contains units, also called neurons, which are connected to the units in 

other layers. The values of these units are determined by the value of the units they 
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are connected to in the previous layers and the model parameters, also called 

weights. 

When selecting the parameter values of a deep learning model, we aim to reduce 

the distance between the observed and predicted outcome; we measure this 

distance using a loss function. Finding the optimal parameters to minimise this loss 

function is known as training. 

The most common approach to training a deep learning model is gradient descent, 

first proposed by Cauchy in 1847. A deep learning model is trained iteratively by 

setting the parameters and calculating the loss function, the parameters are then 

changed slightly, and the loss function is recalculated. The gradient of the loss 

function from the previous step is used in an optimisation algorithm to update the 

parameters for the next step. Unfortunately, when training a neural network, the error 

signal and loss function gradient used to update the parameters can become 

increasingly small as the gradient moves through the layers, preventing convergence 

to the optimal parameters. This is known as the vanishing gradient problem.27 

Conversely, the error signal could "blow up" and tend to infinity, causing the 

exploding gradient problem. A few methods have been proposed to reduce the risk 

of vanishing or exploding gradients, which are discussed later in the thesis. 

In image analysis, the data and model are often too computationally expensive to fit 

in the available memory; therefore, we often split the dataset into batches of data 

and iterate over these batches. We call one iteration over a single batch a step and 

one iteration over the entire dataset an epoch. Usually, the data is shuffled after 

every epoch to avoid the algorithm encountering the same order of batches in each 

epoch. 

Here I describe the basic building blocks of deep learning: the layers, activation 

functions, loss functions, and optimisation algorithms. When discussing these, the 

focus will be on computer vision and image analysis; however, the layers can also be 

used in other applications, such as natural language processing. 

2.4.1 Deep learning layers 

DNNs consist of many consecutive layers.25 There are several types of layers that I 

describe here. The layers used in deep learning can consist of simple operations, 
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such as additions, multiplications, averages, and dot products; however, more 

complex layers combine operations. Here, I briefly outline some of the most 

commonly used layers in deep learning. Although these layers can be applied to 

various tasks, I will use image analysis for illustration as that is the main focus of the 

thesis. 

2.4.1.1 Fully connected layers 

The most straightforward layer of a neural network is the fully-connected layer, also 

called a dense layer. Each unit is connected to each unit in the next layer; this 

makes the layer computationally expensive.28 Given a vector of features 𝑋 and some 

parameters or weights 𝑊 with some bias 𝑏, the fully connected layer is calculated by 

𝑌 = 𝑊𝑋 + 𝑏 (2.11) 

Networks consisting solely of fully-connected layers are known as fully-connected 

networks. Fully-connected neural networks have been used in computer vision when 

the size of the image is small. For example, the MNIST dataset consists of images of 

hand-written digits (0-9) of size 28 × 28 pixels.29 Examples of these images are 

shown in Figure 2.7. These images can be flattened to a vector of length 784, and a 

fully-connected neural network can be used to classify which digit is written. On the 

MNIST dataset, a simple fully-connected network can achieve impressive 

performance; however, fully-connected networks become too computationally 

complex when high-resolution images are used. An example of a fully-connected 

network, illustrated with a binary classification task, is shown in Figure 2.8. 

Figure 2.7: Example images from the MNIST handwritten digit recognition dataset. 
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Figure 2.8: An example of a fully-connected neural network. The task used to 

illustrate the network is a simple binary classification task of square vs circle. The 

image is flattened to a vector representation. There are five hidden layers; the first 

two hidden layers have five units each, the subsequent two hidden layers have four 

units each, and the final hidden layer has three units. The output layer consists of a 

single unit. An activation function is usually applied to the final layer to obtain a 

probability of the shape being a circle. 

2.4.1.2 Convolutional layers 

Convolutional neural networks (CNNs) replace one or more matrix multiplications 

with a convolution. While fully-connected layers have each unit connected to each 

unit in the previous layer, units in a convolutional layer are only connected to 

previous units in their receptive field; this dramatically reduces computational 

complexity.28 This receptive field can be thought of as a field of vision for that 

particular unit. Additionally, convolutional layers preserve some of the spatial 

information lost when using a fully-connected network, as we no longer need to 

flatten the image to a vector form. For example, in computer vision, two-dimensional 

(2D) convolutions are often used to reduce an image into a representation in smaller 

dimensions. These smaller representations can then be passed to a fully-connected 

layer for classification. The convolutional layer reduces the image dimensions by 

reducing the height and width of the image while expanding the image depth. The 
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depth dimension is made up of channels; for example, an RGB image has three 

channels, red, green, and blue. 

The parameters of a convolutional layer are filters or convolutional kernels; these 

filters are the size of the receptive field, which is chosen as a hyperparameter. Each 

filter is convolved over the image and then multiplied and accumulated. In simpler 

terms, convolving is like sliding the filter across the image, moving a fixed number of 

pixels at a time. The number of pixels that we move along is called the stride. This 

results in a feature map. Each filter creates a different feature map representing 

different image features; these multiple feature maps can be stacked to produce a 

three-dimensional (3D) representation. At the edges of the image, padding may be 

used to produce a feature map of the same width and height as the original input; 

padding with all zeros is most commonly used. The convolutional layer is shown 

graphically in Figure 2.9. The representation's height and width can be reduced by 

increasing the stride; this centres the filter at larger intervals. The effects of using a 

stride of size two are shown in Figure 2.10. In these diagrams, integer values are 

used for illustration; however, the values may not necessarily be integers. 
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(a) 

 

(b) 

 

(c) 

Figure 2.9: The convolutional layer takes an image and a filter the same size as the 

receptive field, consisting of parameters to be learned. (a) The dot product of the 

filter and receptive field is calculated, and the value is output. (b) We then slide the 

filter along the image and repeat. (c) At the edges of the image, zero padding is 

used. 
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Figure 2.10: Convolution with a stride size of 2. The filter moves along the image by 

two pixels instead of pixel by pixel. 

2.4.1.3 Pooling layers 

The feature maps produced by convolutional layers are often sensitive to the location 

of the identified features. However, it is unlikely that those features will always be in 

the same location of the image each time; therefore, pooling can make the model 

more robust to the location of features in the image. In addition, pooling effectively 

downsamples or downsizes the image, reducing the model's computational 

requirements. 

Like a convolutional layer, each unit in the pooling layer is connected only to the 

units of the previous layer within a receptive field28. Pooling layers do not have a 

filter, and therefore there are no parameters to train. The two main types of pooling 

are max pooling and average pooling. Max pooling takes the maximum value of the 

receptive field, while average pooling uses the mean value. Similar to a convolutional 

layer, the size of the receptive field, stride size, and padding can be chosen. Pooling 

layers are applied to each channel (or feature map) separately. 

An illustration of how max and average pooling works is shown in Figure 2.11. 

Integer values are shown, and the output is converted to pixel values for illustration; 

however, when pooling is applied to hidden layers, values may not necessarily be 
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integers. An example of both max and average pooling applied to an image is shown 

in Figure 2.12. The image resized using max-pooling appears slightly brighter than 

average pooling, especially around the eyes and whiskers; this is due to max-pooling 

selecting the maximum value in each receptive field. 

 

(a) 

 

(b) 

Figure 2.11: Diagram illustrating how (a) max pooling and (b) average pooling work. 

A stride of size 2 is used, resulting in an image that is two times smaller in both 

height and width. Integer values and the output is converted to pixel values to better 

display the difference between max and average pooling. 
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Figure 2.12: (a) Original image with dimensions 1024 × 1024, (b) image resized to 

256 × 256 using max pooling with a stride of 4 and kernel size (2, 2), and (c) image 

resized to 256 × 256 using average pooling with a stride size of 4 and kernel size 

(2, 2). 

Max and average pooling subsample within a receptive field, which is a small patch 

of the whole channel (or feature map). Instead, we could apply pooling to the whole 

channel by setting the size of the receptive field to be the size of the channel; this is 

known as global pooling. Global pooling reduces the channel to a single value and 

can be used to obtain a feature vector from the feature maps. These feature vectors 

can then be fed into a fully-connected network for classification. Global pooling can 

be used as an alternative to flattening the feature maps, resulting in a much smaller 

feature vector. 

2.4.1.4 Recurrent layers 

In convolutional neural networks, the activation only flows forward from the input 

layer to the output layer; these networks are called feedforward neural networks28. 

For some applications, we may want to retain past information. Recurrent neurons 

can reinput their output into themselves, retaining previous information through 

feedback connections; this makes them particularly useful when dealing with 



37 
 

sequences. A comparison between a feed-forward neuron and a recurrent neuron is 

shown in Figure 2.13, and a diagram of recurrent neurons unrolled over time is 

shown in Figure 2.14. 

Recurrent neural networks (RNNs), which use these recurrent cells, often suffer from 

the vanishing gradient problem. Long short-term memory (LSTM) is one type of 

recurrent unit and was created to overcome the vanishing gradient problem.30 LSTM 

outputs two vectors at each time point 𝑡: one with the short-term state ℎ𝑡 and one 

with the long-term state 𝑐𝑡.  Inside the unit there are three gates: an input gate 𝑖𝑡, an 

output gate 𝑜𝑡 , and a forget gate 𝑓𝑡. The cell remembers the information over several 

time points while the gates help control the flow of information through the cell. The 

input gate controls which parts of the input are stored in the long-term state, the 

forget gate controls which parts of the long-term state are forgotten and the output 

gate controls which parts of the long-term state are output. An LSTM unit is 

displayed in Figure 2.15. 

 

Figure 2.13: A basic representation of a feedforward neuron (left) and a recurrent 

neuron (right). 
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Figure 2.14: Recurrent neurons unrolled over three time points. 

 

 

Figure 2.15: Diagram of an LSTM cell. 
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Figure 2.16: Diagram of a GRU cell. 

The main aim of this LSTM unit was to overcome the problems with the error back-

flow, which could solve the vanishing gradient problem. Before the introduction of the 

LSTM, the practical usefulness of RNNs, especially for many time steps, was in 

question. RNNs often encountered either vanishing or exploding gradients with as 

few as five time steps.31 LSTM was able to train stably with as many as 1000 time 

points. With the introduction of LSTM, interest in RNNs was renewed. However, 

LSTM units are complex and computationally expensive; there was room for 

improvement in simplifying the module. 

The gated recurrent unit (GRU) cell greatly simplifies the gates used in LSTM by 

merging the input and forget gates and removing the output gate.32 In addition, the 

two vectors containing the short- and long-term states are also combined into a 

single vector. This modification greatly reduces computational complexity; however, 

studies comparing LSTM and GRU have shown there to be little difference in 

performance.33-35 A diagram of a GRU cell is shown in Figure 2.16. Although the 

GRU did not significantly improve the LSTM in terms of performance, the reduced 

complexity has led to significantly reduced training times and computational 

requirements. This improvement brought the stable training of large RNNs to a larger 

group of researchers and further improved the practical usefulness of RNNs. 

Some networks utilise recurrent and convolutional layers, known as recurrent 

convolutional neural networks (RCNNs).36 
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2.4.1.5 Dropout 

Deep learning models often have millions of parameters; some models can even 

have billions37 or trillions of parameters.38 This makes models prone to overfitting, 

where the model performs exceptionally well on the training data but fails to 

generalise to unseen data. 

There are many ways to alleviate overfitting. First, we could use L1 and L2 

regularisation. We could use a validation set evaluated during training and stop 

training when the validation performance stops improving. Finally, we could augment 

the data discussed to simulate extra samples. 

Another option to reduce overfitting in deep learning models is dropout39. During 

training, at each step, we can randomly drop units out of the model with probability 𝑝. 

A common value for 𝑝 is 0.5, meaning that each unit has a 50% probability of being 

dropped from the model at each step. This prevents the model from learning 

parameters that make just a few units useful, as those units could be removed from 

the model during training. 

2.4.1.6 Batch normalisation 

When training a deep learning model, the parameters of each layer are iteratively 

updated, meaning that the layer's inputs (and their distribution) are constantly 

changing during training. This makes the training sensitive to parameter initialisation 

and requires lower learning rates, increasing training time. To overcome these 

problems, Ioffe and Szegedy proposed normalising the inputs to the layer during 

training using batch normalisation.40 They found that batch normalisation greatly 

reduces training time and acts as a regularisation. 

During training, batch normalisation begins by calculating the mini-batch mean and 

variance 

𝜇𝐵 =
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

, and 𝜎2 =
1

𝑚
∑(𝑥𝑖 − 𝜇𝐵)

2.

𝑚

𝑖=1

(2.12) 

Then values are normalised 

�̂�𝑖 =
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

, (2.13) 
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where 𝜖 is a small smoothing term added to avoid division by zero. Finally, a scale 

and shift are applied to the normalised values giving 

𝑦𝑖 = 𝛾�̂�𝑖 + 𝛽, (2.14) 

where 𝛾 and 𝛽 are parameters to be learned. 

During inference, the mean and standard deviation of the whole training set is used 

rather than the mini-batch mean and standard deviation. 

As a regularisation technique, batch normalisation greatly reduces the need for 

dropout. Combining batch normalisation and dropout concurrently in the same 

network may seem logical to increase the amount of regularisation; however, this 

can result in significantly worse performance.41 

2.4.2 Activation functions 

An activation function determines the output of each layer or node in a neural 

network. Activation functions can be non-linear and are applied to the hidden and 

output layers. A common activation function for the hidden layer is the hyperbolic 

tangent function 𝑓(𝑥) = tanh(𝑥). Activation functions are analogous to link functions 

in generalised linear mixed models for the output layer. In binary classification tasks, 

the sigmoid activation is most commonly used. Activation functions are vital for 

introducing non-linearity into deep learning models. Without activation functions, 

using multiple layers would be equivalent to using a single layer. 

2.4.2.1 Identity and linear activations 

The simplest activation function is the identity activation function, which is the same 

as applying no activation to the node 𝑓(𝑥) = 𝑥.  

2.4.2.2 Tanh 

The hyperbolic tangent (tanh) function is often used for the hidden layer activation. 

The tanh function is S-shaped and rescales values to between -1 and 1. The tanh 

function is given by 

𝑓(𝑥) = tanh(𝑥) . (2.15) 

 

The tanh function is continuous and everywhere differentiable. 
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2.4.2.3 Sigmoid 

The sigmoid function, also called the logistic function, is often used on the output 

layer to rescale the output between 0 and 1, forming a probability distribution. It is 

often used for binary or multiclass classification when the classes are not 

independent. The sigmoid function is 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
. (2.16) 

 

Like the tanh function, the sigmoid function is S-shaped, continuous, and 

differentiable everywhere. The sigmoid activation is also commonly used for binary 

segmentation, where pixels are either objects or backgrounds. 

2.4.2.4 Softmax 

The softmax function can be used in a similar to the sigmoid to produce a probability 

distribution from the output layer values; however, the softmax function is used for 

multiclass classification when the classes are independent42. The softmax is given by 

𝑓(𝑥) =
𝑒𝑥

∑ 𝑒𝑥𝑛
𝑖=1

, (2.17) 

where 𝑛 is the number of classes, this produces a vector of probabilities for each 

class. The softmax function is continuous and differentiable. Similar to the sigmoid 

activation, the softmax can be used for segmentation; however, the softmax is used 

where multiple different objects are segmented. 

2.4.2.5 ReLU 

The choice of hidden layer activation is vital for vanishing gradients, as the S-shaped 

function saturates in both positive and negative extremes. The rectified linear units 

(ReLU) activation function was proposed to mitigate the vanishing gradient 

problem27. The ReLU activation is given by 

𝑓(𝑥) = max(0, 𝑥) . (2.18) 

This function sets values less than 0 to zero and is the identity function for values 

greater than 0, which means the ReLU activation is computationally efficient. In 

addition, unlike the tanh, sigmoid, and softmax activations, the ReLU activation is 

non-differentiable at zero. 
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One of the advantages of the ReLU activation is that all values lower than zero are 

set to zero; only around half of the units are activated, resulting in a sparse 

activation. However, this can result in the units remaining at zero, known as the 

dying ReLU problem. Several variants of the ReLU activation have been proposed to 

overcome this problem. The leaky ReLU43 adds a slight gradient to the negative units 

𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝑥 ≥ 0,
𝛼𝑥, 𝑖𝑓 𝑥 < 0.

(2.19) 

 

The hyperparameter 𝛼 is often chosen to be 0.01, but other values may be chosen. 

The parametric ReLU activation is the same as the leaky ReLU with the value of 𝛼 

learned by the algorithm during training44. Another variant of leaky ReLU is 

randomised leaky ReLU45, where the value of 𝛼 is chosen from a uniform random 

distribution 

𝛼 ∼ 𝑈(𝑙, 𝑢) (2.20) 

during training and fixed to the average 

𝛼𝑡𝑒𝑠𝑡 =
𝑙 + 𝑢

2
(2.21) 

during inference. 

The exponential linear unit (ELU)46 activation function is similar to leaky ReLU. The 

ELU is given as 

𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝑥 ≥ 0,

𝛼(exp(𝑥) − 1), 𝑖𝑓 𝑥 < 0,
(2.22) 

where 𝛼 > 0. The ELU activation function is more computationally expensive than 

the other ReLU variants; however, training time is reduced because the mean unit 

activations are pushed closer to zero, similar to batch normalisation. 

2.4.2.6 Swish 

The swish activation function was found via an automatic search47. The swish 

function is defined as 

𝑓(𝑥) = 𝑥𝜎(𝑥), (2.23) 
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where 𝜎(𝑥) is the sigmoid activation. In experiments, the swish activation function 

was found to outperform the ReLU activation.47 

2.4.3 Commonly used CNN architectures 

The majority of work in image classification has focused on CNN-based models. A 

few famous and well-developed CNN architectures are commonly used for various 

tasks. The work presented in this thesis uses these CNN architectures as a 

backbone, and here I describe some of the most common CNN architectures. 

2.4.3.1 ImageNet 

Before discussing architectures, it is important to introduce one of the main driving 

forces behind image recognition over the last decade. The ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC)48 is an annual competition that evaluates 

computer vision algorithms in image classification and object detection. The original 

ImageNet dataset contained over 1 million images from 1000 classes. It is used in 

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a competition 

between network architectures and deep learning techniques. These classes consist 

of real-world photographs such as dogs, cats, flowers, and cars; often, the images 

are complex scenes. Models are usually assessed in their accuracy of correctly 

predicting the class (top-1 accuracy) or having the correct class in their top five 

predictions (top-5 accuracy). 

ImageNet has undoubtedly pushed researchers to continually improve image 

recognition algorithms; however, there are some issues with using ImageNet. Firstly, 

models have exceeded human-level performance. For example, the current best 

classification algorithm at the time of writing49 for top-5 has an error rate of 0.98% 

compared to 5.1% for humans, and the best algorithm for top-1 accuracy has an 

error rate of 9.8%.50 We are reaching a saturation point where algorithms can no 

longer improve, and a more challenging dataset is needed. It is also possible that 

some of the 0.98% error rate is due to mislabelling in the dataset51. Assessing the 

models based on the error rate may not necessarily be the most appropriate 

evaluation method if we are concerned with how wrong the errors are. Models with 

higher error rates but predictions closer to the actual answers may be preferred. For 

example, an algorithm may misclassify a bird as the wrong species of bird, while an 

algorithm with a lower error rate may classify the bird as a flower. Nonetheless, 



45 
 

ImageNet is still a hugely influential dataset and has led to many great innovations in 

architecture design. 

Often these models are available with parameters already trained on ImageNet.  

Using pretrained parameters means that the parameters are already initialised to 

reasonable values for feature extraction; therefore, we only need to fine-tune these 

parameters, and the training time is greatly reduced. 

2.4.3.2 LeNet 

One of the first CNNs to be developed was LeNet. In this groundbreaking series of 

work, LeCun et al. showed that single-layer networks do not generalise well; 

however, multilayer constrained networks using convolutional layers (called shift-

invariant feature detectors in 1989) have much better performance.52 The authors 

identified that handwriting recognition models often consist of multiple modules, and 

a multi-layer neural network may be able to replicate these modules. LeNet used 

multiple stacked layers to develop a model which could recognise hand-written 

digits. Although this model was simple and limited in applicability, the initial work was 

improved upon, and LeNet-5 was created, showing improved performance compared 

to previous methods on handwritten digits obtained from the US Postal Service,53 54 

with minimal pre-processing of the images. LeNet showed that hand-crafted features 

were no longer necessary, allowing more complex problems to be solved quicker 

and cheaper than using previous methods. 

LeNet-5 consists of 7 layers. The original implementation of LeNet-5 takes a 32 × 32 

image as its input. First, the image is passed to a convolutional layer with 6 filters 

and a kernel size of 5 × 5, followed by a tanh activation function. The dimensions of 

the feature maps are then reduced using an average pooling layer with a stride size 

of 2 and a kernel size of 2 × 2. Next, a second convolutional layer is used with 16 

filters and a tanh activation, followed by another average pooling layer. This results 

in a feature map of size 5 × 5 × 16. A final convolutional layer, with 120 filters and 

kernel size 5 × 5, reduces the feature map into a feature vector of length 120. A fully-

connected layer follows this with 84 units and tanh activation. Finally, a full-

connected layer with 10 units (one for each class) and softmax activation produces a 

probability of the image showing each class. This architecture is outlined in Figure 

2.17. 
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The MNIST dataset presented LeNet-5 with 58,527 images of a single digit from 500 

different writers. The model achieved a final error rate of just 0.8% in the test set.29 

This performance matched the performance of the previous best method using 

support vector machines; however, the number of multiply-add operations was 

greatly reduced when using LeNet-5 from 28,000 to 401, providing a much more 

practically applicable method. 

LeNet-5 was initially run on a Sun-4/260 workstation with 128MB of memory. Due to 

these hardware restrictions, the network size could not be increased much more, 

and LeNet-5 is restricted to small, simple image recognition tasks, such as 

handwriting and digit recognition. Despite this, LeNet-5 was the breakthrough work 

that brought attention to CNNs and advances in both computation and deep learning 

meant that CNNs could be applied to a broader variety of applications. 

 

Figure 2.17: Diagram of the LeNet-5 architecture. Handwritten digits, such as those 

in MNIST, are used as examples. Convolutional layer parameters are displayed as 

kernel size/strides/filters, pooling layer parameters are displayed as kernel 

size/strides, and output sizes are shown below each layer. 

2.4.3.3 AlexNet 

In 2012, a new CNN called AlexNet55 won the ILSVRC48. With advances in 

computing hardware, AlexNet was able to add more layers creating a larger and 
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deeper network which can classify higher-dimensional colour images. As a result, 

AlexNet uses colour images with size 227 × 227 as its input by default. 

AlexNet was the first CNN to begin stacking convolutional layers without a pooling 

layer between them; the authors noted that removing these stacks resulted in a drop 

in model performance. Dropout and data augmentation were also used to reduce 

overfitting. AlexNet was applied to the ImageNet dataset. Only cropping was used to 

reduce the image size, with no additional image pre-processing required. AlexNet 

achieved a top-5 error rate of 17%, with the second-place competitor only achieving 

26%.55 These impressive results show huge improvements over the other methods 

in the competition. Despite the problems associated with ImageNet, which I have 

discussed, AlexNet clearly shows more accurate classifications on a large-scale 

dataset. The improvement is clear, although the results lack the fundamental robust 

analysis we expect today, such as confidence intervals. The reasons behind this 

improvement are also well justified in the paper. The authors describe how they 

offset the risk of overfitting with a larger model by introducing dropout and data 

augmentations.  

The authors also gave some qualitative evidence of what the network had learned by 

showing some examples of images with predictions and some groups of images that 

the network identified as similar. This qualitative analysis is not as sophisticated as 

the model visualisation methods used today; however, it was an attempt to reduce 

the black-box nature of DL.  

A diagram of AlexNet is shown in Figure 2.18. The following year the ILSVRC was 

won by ZFNet, which is very similar to AlexNet with slightly improved 

hyperparameters.  
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Figure 2.18: Diagram of the AlexNet architecture. Natural images, such as those in 

ImageNet, are used as an example. Convolutional layer parameters are displayed as 

kernel size/strides/filters, pooling layer parameters are displayed as kernel 

size/strides, and output sizes are shown below each layer. 

 

2.4.3.6 VGG 

VGGNet56 was runner-up in the ILSVRC 2014 for classification with a top-5 error rate 

of 7.32%. There are two variants: VGG16 and VGG19, with VGG19 being a deeper 

version of VGG16. VGGNet stacks convolutional layers similar to AlexNet; however, 

VGGNet has many more units in the convolutions. The creators of VGGNet 

concluded that an increased model depth results in improved model accuracy.56 

Although this is somewhat true, deeper neural networks require more data and 

regularisation to prevent overfitting. I would argue that increased model depth leads 

to improved accuracy on the training data, but it may result in reduced accuracy on 

external data. Both VGG16 and VGG19 are displayed in Figure 2.19. 
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Figure 2.19: Diagram of the VGGNet architectures (Left: VGG16; Right: VGG19). 

Natural images, such as those in ImageNet, are used as an example. Convolutional 

layer parameters are displayed as kernel size/strides/filters, pooling layer parameters 

are displayed as kernel size/strides, and output sizes are shown below each layer. 

2.4.3.7 Inception 

The architecture which beat VGGNet for classification is called Inception or 

GoogLeNet.57 The name Inception is a reference to the 2010 film.58 Inception 

achieved a top-5 error rate of 6.67%; this is a 56.5% relative reduction in error rate 

compared to AlexNet two years prior. The authors of Inception reached a similar 

conclusion to the authors of VGGNet a deeper network leads to improved 

performance; however, Inception also increases the width of the network. The main 

feature of Inception is the Inception module. The input feature maps are copied to 
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separate branches with different kernel sizes, which can capture features at several 

scales. Padding ensures that the output size is equal despite the differing kernel 

sizes. The module uses 1 × 1 kernels, which act as bottleneck layers, reducing 

dimensionality and computation. The motivation behind this approach is that salient 

objects in images vary greatly in size; sometimes, the object may be close to the 

camera and occupy a large part of the image; other times, the object may be further 

away, occupying a smaller section. Therefore, using various kernel sizes to capture 

both global and local features can be beneficial.  A diagram of an Inception module 

is shown in Figure 2.20, and the full Inception-v1 is shown in Figure 2.21. 

Although VGGNet improved significantly over AlexNet, the primary motivation was to 

simply make the network deeper. The authors of Inception-v1 confirmed that the 

assumption of a deeper network leads to improved performance; however, the 

addition of a wider network is why Inception-v1 won the ILSVRC challenge that year. 

 

Figure 2.20: Diagram of an Inception module. 

Inception-v2 tweaked the Inception-v1 architecture replacing the 5 × 5 convolution 

with two 3 × 3 convolutions. Although this increases the number of convolutions, it 

reduces computational complexity. One 5 × 5 convolution is 2.78 times more 

computationally expensive than a 3 × 3 convolution (52/32 = 2.78). For similar 

reasons, asymmetric convolutions were introduced where instead of a 3 × 3 

convolution, a 3 × 1 convolution is followed by a 1 × 3 convolution. They also altered 

the inception network to reduce the grid size while expanding the filter bank, 

reducing the computational complexity. Diagrams of the modules for Inception-v2 are 

shown in Figure 2.22. 
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Figure 2.21: Diagram of the Inception-v1 architecture. Natural images, such as those 

in ImageNet, are used as an example. Convolutional layer parameters are displayed 

as kernel size/strides/filters, pooling layer parameters are displayed as kernel 

size/strides, and output sizes are shown below each layer. Numbers inside the light 

blue boxes correspond to the a, b, c, d, e, f, and g values in Figure 2.20. 
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Figure 2.22: Inception-v2 and v3 modules. 

(a) (b) 

(c) (d) 

(e) 
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In the same paper, four additional changes were made to this Inception-v2 

architecture, with the resulting altered architecture and training scheme being 

referred to as Inception-v3. First, the RMSProp optimiser was used. Secondly, label 

smoothing was used to add uncertainty to the labels and reduce overfitting. Third, 

the 7 × 7 convolution was replaced with three 3 × 3 convolutions, similar to the 

replacement of the 5 × 5 convolution. Finally, batch normalisation was applied to the 

auxiliary output layer. Inception-v3 is available as a pretrained model in TensorFlow; 

however, the implementation is slightly different to the paper. In Figure 2.23, the 

Tensorflow implementation is shown. 

A more streamlined and simplified architecture was later proposed called Inception-

v459. Inception-v4 aims to further increase the efficiency of the Inception module by 

making it deeper and wider. The first change to the architecture added branches to 

the stem before the inception modules. Secondly, the Inception modules were made 

more uniform; this change was due to a different library being used to train, which 

meant the model no longer needed to be trained in partitions. Finally, a new 

reduction block was introduced. 

In this thesis, I choose to use Inception-v3 in all experiments. The combination of 

depth and width in the network combined with batch-normalisation results in an 

architecture with good performance and high generalisability on many tasks.  The 

replacement of larger kernel size convolutions with a series of smaller ones also 

makes the overall computational complexity reasonable. 

2.4.3.8 ResNet 

A residual network (ResNet)60 won the ILSVRC in 2015, lowering the top-5 error rate 

to just 3.57%. The primary motivation behind ResNet is to overcome the problem of 

parameters being too close to zero, causing the outputs to be zero. ResNet adds a 

skip connection that controls the flow of gradients to reduce the chances of the 

vanishing or exploding gradient problem. Figure 2.24 displays the skip connection for 

a two and three-layer module. 

There are several variants of ResNet architecture proposed in the original paper.60 

Resnet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet152. ResNet50 is the 

most widely used as it is a reasonable trade-off between performance and 

computational requirements.  ResNet-18 and ResNet-34 are made up of modules 
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with two convolutional layers, while ResNet-50, ResNet-101, and ResNet-152 

modules have three convolutional layers. I show architectures for ResNet-18, 

ResNet-34, ResNet-50, and ResNet-101 in Figure 2.25. 
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Figure 2.23: Inception-v2 and v3 architecture. Natural images, such as those in 

ImageNet, are used as an example. Convolutional layer parameters are displayed as 

kernel size/strides/filters, pooling layer parameters are displayed as kernel 

size/strides, and output sizes are shown below each layer. 
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Figure 2.24: ResNet modules showing (a) a skip connection over two layers and (b) 

a skip connection over three layers. 

 

Figure 2.25: Architectures for ResNet-18, ResNet-34, ResNet-50, and ResNet-101. 

Natural images, such as those in ImageNet, are used as an example. Convolutional 

layer parameters are displayed as kernel size/strides/filters, pooling layer parameters 

are displayed as kernel size/strides, and output sizes are shown below each layer. 

(a) (b) 
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2.4.3.9 Attention and Transformers 

The most recent of the CNNs I have presented here were created in 2015. Since 

then, there have been advances in CNN architecture, such as NASNet61 and 

EfficientNet;62 however, they had many more parameters than previous 

architectures. NasNet large has 88.9 million parameters, and EfficientNetB7 has 

66.7 million, compared to Inception V3 with 23.9 million; this greatly increases the 

computational requirements. I chose to use Inception V3 as it is widely used and has 

reasonable requirements.  

Beyond CNN architecture, attention is another area that I could have utilised in my 

work. A Google paper title “Attention is all you need” sparked interest in attention by 

showing that a novel architecture called a Transformer using only attention 

mechanisms could improve language translation tasks.63 A paper by Woo et al.64 

introduced a convolutional block attention module, which infers attention in both the 

channel and spatial dimensions. This module could be easily integrated into existing 

networking architectures and has little additional computational cost. They found 

improvements in classification across a range of datasets. More recently, 

architectures solely based on transformers have been developed.65 

Although much work has been focused on attention, another paper also by Google 

claimed that “Attention is not all you need” and that attention mechanisms are poorly 

understood, leading to inductive bias. For this reason, I chose to use Inception V3 

only throughout my work as the method I developed could be implemented in other 

future networks, including those with attention mechanisms.  

2.4.4 Loss functions 

When training a model and estimating parameters, we aim to minimise the distance 

between the observed and predicted values. The function used to measure this 

distance is known as a loss function (or a cost function). It may seem obvious to 

simply use the accuracy or one minus the accuracy; however, accuracy is not a 

distance metric and is not suitable for minimising the distance between observed and 

predicted outcomes. Loss functions are often based on maximum likelihood 

estimators with the sign reversed. 
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There are many loss functions to choose from depending on the model used and the 

type of data being modelled. I will briefly discuss common loss functions and their 

attributes. 

2.4.4.1 Binary cross-entropy 

For binary classification tasks, binary cross-entropy is often chosen for the loss 

function. Binary cross-entropy is based on the maximum likelihood estimator of the 

Bernoulli distribution. Consider 𝑛 random variables, 𝑋1, 𝑋2, … , 𝑋𝑛 independent and 

identically with the Bernoulli distribution, 𝑋1, 𝑋2, … , 𝑋𝑛 ∼ 𝐵𝑒𝑟𝑛(𝑝)  where 

𝑋𝑖(𝐸𝑣𝑒𝑛𝑡) = 1 and 𝑋𝑖(𝑁𝑜 𝐸𝑣𝑒𝑛𝑡) = 0. (2.24) 

The probability mass function (pmf) of 𝑋𝑖 is given by 

𝑝(𝑥) = {
𝑝 𝑖𝑓 𝑥 = 1,

1 − 𝑝 𝑖𝑓 𝑥 = 0,
(2.25) 

which can be written as 

𝑝(𝑥) = 𝑝𝑥(1 − 𝑝)1−𝑥. (2.26) 

The likelihood is given by the joint distribution of the samples 𝑋1, 𝑋2, … , 𝑋𝑛 

ℒ(𝑝) =∏𝑝𝑖
𝑥𝑖(1 − 𝑝𝑖)

1−𝑥𝑖

𝑛

𝑖=1

. (2.27) 

This likelihood function needs to be maximised; however, this is the same as 

maximising the log-likelihood, which has a slightly easier form to compute 

𝑙(𝑝) = log(ℒ(𝑝)) =∑[log(𝑝𝑖) 𝑥𝑖 + lo g(1 − 𝑝𝑖) (1 − 𝑥𝑖)].

𝑛

𝑖=1

(2.28) 

For the binary cross-entropy loss function, this is divided by the total number of 

samples. Therefore, for an algorithm with 𝑛 predicted probabilities 𝑝𝑖 ∈ [0,1] for 𝑛 

observed events 𝑥1, 𝑥2, . . . , 𝑥𝑛. The binary cross-entropy loss function is given by 

𝐵𝐶𝐸 = −
1

𝑛
∑[xilog(𝑝𝑖) + (1 − 𝑥𝑖) log(1 − 𝑝𝑖)].

𝑛

𝑖=1

(2.29) 
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This loss function is used for binary classification or when classes are not mutually 

independent. For example, a classifier may have "fluffy" and "animal" as two classes; 

a cat may be classified as both "fluffy" and an "animal". 

2.4.4.2 Categorical cross-entropy 

When dealing with more than two classes, the generalisation of the Bernoulli 

distribution to the multiclass case can be used. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be 𝑛 random 

variables independent and identically with the categorical distribution with 𝐾 possible 

events, where 

𝑋(𝐸𝑣𝑒𝑛𝑡 0) = 0, 𝑋(𝐸𝑣𝑒𝑛𝑡 1) = 1,… , 𝑋(𝐸𝑣𝑒𝑛𝑡 𝐾) = 𝐾. (2.30) 

The pmf for the categorical distribution for the 𝑖𝑡ℎ event is given by 

𝑓(𝑥 = 𝑖) = 𝑝𝑖. (2.31) 

Then likelihood function can be written as 

ℒ(𝑝) =∏𝑝𝑖
𝑥𝑖

𝐾

𝑖=1

. (2.32) 

Taking the log and reversing the sign, the categorical cross-entropy loss function is 

given as 

𝐶𝐶𝐸 = −∑𝑥𝑖 log(𝑝𝑖) .

𝐾

𝑖=1

(2.33) 

Categorical cross-entropy is most useful when there are more than two mutually 

independent classes. 

2.4.4.3 Mean squared error 

Given observed values 𝑥 and predicted probabilities 𝑝, the mean squared error 

(MSE) of 𝑛 samples is 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑝𝑖 − 𝑥𝑖)

2.

𝑛

𝑖=1

(2.34) 

In some of the work presented in this thesis, I choose to use the MSE as the loss as 

there are several properties of the MSE which make it suitable as a loss function: 
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(1) Firstly, the MSE is the second central moment of the error and can be 

decomposed into the bias and variance of the estimator 

𝑀𝑆𝐸(𝑥) = 𝐵𝑖𝑎𝑠2(𝑥) + 𝑉𝑎𝑟(𝑥). (2.35) 

This is useful due to the bias-variance trade-off where variance can be 

reduced by increasing the bias. The bias-variance trade-off can lead to 

models which overfit and fail to generalise to new unseen data. The MSE 

aims to reduce both bias and variance simultaneously. 

(2) In the case of unidimensional predictions, the MSE becomes the Brier score,66 

which additionally has useful properties. The Brier score can be decomposed 

into uncertainty, reliability, and resolution67. Similarly, it can be decomposed 

into calibration and refinement. Refinement is closely related to the ROC 

curve and can therefore be used to measure the model's discrimination. The 

calibration component can be used to measure statistical calibration. Hence, 

the Brier score considers both model discrimination and calibration. The 

importance of both discrimination and calibration is discussed earlier in the 

chapter. 

(3) For linear regression problems, the MSE is convex with only one minimum; 

this guarantees convergence in some scenarios28. 

However, there is a disadvantage to using the MSE; as the MSE squares the error, 

larger errors are more heavily weighted than smaller errors which can be undesired 

in some scenarios68. Therefore, the mean absolute error may be more suitable for 

some applications. 

2.4.4.4 Other loss functions 

Many more loss functions are used in specific situations, such as segmentation. The 

focal cross-entropy loss function was proposed by Lin et al.69 for object detection 

tasks where there is an extreme imbalance between the foreground and background 

𝐹𝐿 = −(1 − 𝑝𝑡)
𝛾 log(𝑝𝑡) , (2.36) 

where 𝑝𝑡 = 𝑥𝑝 + (1 − 𝑥)(1 − 𝑝) and 𝛾 is the focusing parameter which needs to be 

tuned using cross-validation. The focal loss becomes equivalent to cross-entropy 

when 𝛾 = 0. 
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The hinge loss70 is most commonly used for classification with support vector 

machines 

𝐻(𝑝) = max(0, 1 − 𝑥𝑝) . (2.37) 

The Kullback-Leibler divergence71 assesses the distance between two probability 

distributions. The distance is given by 

𝐾𝐿 = 𝑥 log (
𝑥

𝑝
) . (2.38) 

The K-L divergence is a distance, not a metric and is also known as the relative 

entropy. 

Loss functions designed specifically for image segmentation include the Sørensen-

Dice loss72 73 

𝐷𝐿 = 1 −
2𝑥𝑝 + 1

𝑥 + 𝑝 + 1
, (2.39) 

Jaccard loss 

𝐽𝑙𝑜𝑠𝑠 = 1 −
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
, (2.40) 

and active contour loss74 

𝐴𝐶 = ∫|∇𝑢|𝑑𝑠 + ∫ ((𝑐1 − 𝑣)
2 − (𝑐2 − 𝑣 )

2)𝑢𝑑𝑥,
 

Ω

 

𝐶

(2.41) 

where 𝐶 is the curve, Ω is the domain, 𝑢 and 𝑣 are the predicted and ground truth 

segmentations, and 𝑐1 and 𝑐2 are the energies of the foreground and background. 

Both the Sørensen-Dice loss and Jaccard loss can be expressed as scores 

𝐷𝑆 =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
, (2.42) 

where and 

𝐽𝑠𝑐𝑜𝑟𝑒 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
, (2.43) 

where 𝐴 is the prediction and 𝐵 is the ground truth. 

https://en.wikipedia.org/wiki/Broderbund
https://en.wikipedia.org/wiki/Broderbund
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2.4.5 Supervision 

There are three basic types of machine learning: supervised, unsupervised, and 

reinforcement learning. When data is labelled, supervised learning may be used.25 

The deep learning algorithm takes an input and returns a label (or a probability of 

that label) for the input. For example, X-ray images may be classed as healthy or 

diseased. When data is unlabelled, unsupervised learning can be used.28 

Unsupervised learning aims to detect patterns and cluster data without those 

patterns being explicitly labelled by a human. An example of unsupervised learning 

is in recommendation engines, where items are clustered to recommend similar 

items without the need for specific labels for those items. Reinforcement learning 

involves the algorithm interacting with an environment and being rewarded or 

punished based on its action; the algorithm aims to maximise the reward. 

Supervised learning allows us to classify data into known classes; this can be useful 

when developing an algorithm to predict a certain disease; however, labelling the 

data for training can be expensive. Two approaches to reducing the cost of labelled 

data for supervised learning are semi-supervised learning and weakly-supervised 

learning. Semi-supervised learning combines supervised and unsupervised learning 

with some labelled and some unlabelled data. The algorithm may be able to better 

learn the underlying relationship of the labelled data by incorporating the unlabelled 

data. Semi-supervised learning reduces the cost of annotating data by concentrating 

on just a few good-quality labels. Weakly-supervised learning instead reduces the 

cost of annotating the dataset by utilising noisy labels. The annotations can be made 

by non-experts or made quickly with less care than in supervised learning. There are 

many reasons for noisy labels, including non-expert annotations, incomplete 

annotations, and imprecise annotations. 

2.4.6 Parameter initialisation 

Under certain conditions, such as using the MSE loss in linear regression, the loss 

function is continuous and convex with a single minimum, as shown in Figures 2.26-

2.28; however, the loss function is often much more complex. The loss function often 

has local minima and plateaus where the algorithm could get stuck. Local minima 

and plateaus can be avoided by carefully selecting the initial parameter estimates 
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(𝜃0). An initial parameter estimate closer to the minimum will also reduce the number 

of iterations needed for convergence. 

There are several possible choices for parameter initialisation. Parameters could be 

initialised to zero, one, or another constant value. Initialising all parameters to the 

same constant can lead to the model simply learning the same weights. Another 

option is to initialise the parameters with random values, for example, using the 

standard normal distribution. Initialising weights to the standard normal distribution 

can lead to the vanishing gradient problem. 

There have been a few initialisers proposed to overcome the vanishing gradient 

problem. These initialisers choose random distribution parameters based on the 

number of input units, 𝑛𝑖𝑛 and the number of output units, 𝑛𝑜𝑢𝑡. 

The Glorot (also called Xavier)27, He44, and LeCun75 are three popular initialisers.  

For the Glorot27 uniform initialiser, the limits are given by 

𝑙𝑖𝑚𝑖𝑡𝑠 = ±√
6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
. (2.44) 

The limits for the He44 uniform initialiser are 

𝑙𝑖𝑚𝑖𝑡𝑠 = ±√
6

𝑛𝑖𝑛
. (2.45) 

Limits for the LeCun75 uniform initialiser are given by 

𝑙𝑖𝑚𝑖𝑡𝑠 = ±√
3

𝑛𝑖𝑛
. (2.46) 

These initialisers also have variants based on the normal distribution, all with mean 

zero and variances 2/(𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡), 2/𝑛𝑖𝑛, and 1/𝑛𝑖𝑛 for the Glorot, He, and LeCun 

normal initialisers, respectively. 

These initialisers appear relatively similar, with only subtle changes in each. The He 

initialiser has the largest limits for both normal and uniform variants. Unlike the He 

and LeCun initialisers, the Glorot initialiser depends on the number of input units and 

output units. When 𝑛𝑖𝑛 = 𝑛𝑜𝑢𝑡 the Glorot initialiser becomes the Lecun initialiser, and 



64 
 

when 𝑛𝑖𝑛 < 𝑛𝑜𝑢𝑡 the Glorot initialiser gives smaller limits than the LeCun initialiser 

and vice versa. 

In this work, pretrained neural networks are utilised for the backbone networks. 

Pretrained networks have already been applied to classification problems. The 

parameters are already set for some feature extraction and just need to be fine-

tuned for my particular task. 

2.4.7 Optimisation algorithms 

Stochastic gradient descent (SGD) is one of the simplest optimisation algorithms 

used in deep learning28. Given initial parameters 𝑤𝑖  the updated parameters are 

calculated as 

𝜃𝑖+1 = 𝜃𝑖 − 𝜂𝐺, (2.47) 

where 𝜂 is the learning rate, and 𝐺 is the gradient of the loss function 𝐺 = ∇𝐿(𝜃). The 

learning rate is a hugely important parameter and should be chosen carefully so that 

the algorithm can converge to optimal parameters. 

This subsection discusses the importance of selecting a suitable learning rate. I then 

introduce momentum, which can help to avoid local minima. Finally, I briefly outline 

several other optimisation algorithms, which all build upon each other. 

2.4.7.1 Learning rate 

As previously discussed, the gradient of the loss function is used to update the 

model parameters at each step. The most common method used to calculate the 

loss function gradient is backpropagation76. An optimiser uses the gradient to 

iteratively select parameters which minimise the loss. 

Although other methods have been proposed, gradient descent and its various 

extensions account for most optimisation algorithms currently used.  For simplicity, 

the loss function can be imagined as a U-shaped curve on a graph of parameter 

values vs loss function. The size of the step taken is called the learning rate. 

The choice of learning rate is crucial to ensure the algorithm converges in a 

reasonable amount of time. A learning rate that is too big could miss the minima and 

may even diverge, as demonstrated in Figure 2.26. A learning rate that is too small 

will take too long to converge; this can be expensive and time-consuming, especially 
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when large computationally complex models are used; this is demonstrated in Figure 

2.27. A correct learning rate converges to the minima quickly, as displayed in Figure 

2.28. 

The optimal learning rate will likely be different at different stages of training. Several 

learning rate scheduling algorithms have been proposed to alter the learning rate 

during training. One option is to reduce the learning rate when the performance 

plateaus. For example, the learning rate could be halved if the loss does not reduce 

for three epochs. 

 

Figure 2.26: The learning rate is too high; the algorithm diverges from the minimum. 

 

Figure 2.27: The learning rate is too low; the algorithm takes too long to converge. 
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Figure 2.28: The learning rate is well-chosen and converges to the minimum within a 

few iterations. 

2.4.7.2 Momentum 

The algorithm does not consider the previous gradients when gradient descent takes 

a step. Momentum can be used to consider these previous gradients and helps 

avoid local minima.77 Simple momentum is given by 

𝜃𝑖+1 = 𝜇𝜃𝑖 − 𝜂𝐺, (2.48) 

where 𝜇 is the momentum parameter often chosen to be 0.9. An alternative to 

classical momentum is Nesterov momentum78, where the gradient is calculated as 

𝐺 = ∇𝐿(𝜃 + 𝜇𝜃). (2.49) 

Momentum avoids local minima and can speed up training by considering the 

previous gradient when choosing the next step. The downside to momentum is that 

an extra hyperparameter (𝜂) is introduced; however, a value of 0.9 often gives good 

results. 

2.4.7.3 AdaGrad 

While SGD follows the steepest gradient at each step, adaptive gradient (AdaGrad) 

considers the earlier gradients to learn the general geometry79. The previous 

gradients are incorporated into the updated parameter estimates by averaging the 

previous squared gradients 

𝑆𝑖+1 = 𝑆𝑖 + 𝐺𝑖⊗𝐺𝑖, (2.50) 

where ⊗ is the element-wise multiplication operator. 
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The parameter estimates are then updated with 

𝜃𝑖+1 = 𝜃𝑖 −
𝜂𝐺

√𝑆𝑖+1 + 𝜖 
, (2.51) 

where 𝜖 is added to avoid division by zero. It may be noticed that AdaGrad is 

equivalent to SGD with a learning rate of 
𝜂

√𝑆𝑖+1+𝜖
. This can be considered an adaptive 

learning rate, with the current steps learning rate based upon the gradient of the 

previous steps. The following optimizers discussed in this section all build upon 

AdaGrad and, therefore, can also be thought of as having adaptive learning rates. 

The choice of learning rate is essential; however, with AdaGrad, the impact of a 

slightly suboptimal learning rate is reduced. This was a significant advancement for 

optimisation algorithms, reducing the time spent tuning the initial learning rate. 

Unfortunately, the learning rate is often reduced too quickly in deep learning, and the 

algorithm fails to converge to the local minimum. 

2.4.7.4 RMSProp 

Root mean squared propagation (RMSProp) improves upon AdaGrad by decaying 

the older gradients while giving more weight to the more recent gradients.80 The 

weighted squared gradients are calculated as 

𝑆𝑖+1
 = 𝛽𝑆𝑖

 + (1 − 𝛽)𝐺𝑖⊗𝐺𝑖, (2.52) 

where 𝛽 is the momentum. 

Then the parameter updates for RMSProp are 

𝜃𝑖+1 = 𝜃𝑖 −
𝜂𝐺

√𝑆𝑖+1
 + 𝜖

. (2.53) 

This was a significant improvement upon AdaGrad and enabled adaptive gradients 

to be used on deep learning problems. The introduction of adaptive gradients to 

deep learning was so significant that it became one of the major changes in 

Inception-v3. 

2.4.7.5 Adam 

RMSProp enabled deep learning to benefit from adaptive gradients, while 

momentum helps the algorithm to converge faster. Adaptive momentum (Adam) 
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combines RMSProp with momentum81. Given chosen decay rates 𝛽1 and 𝛽2, the 

biased momentum is 

𝑚𝑖+1 = 𝛽1𝑚𝑖 + (1 − 𝛽1)𝐺, (2.54) 

and the unbiased momentum is 

�̂�𝑖+1 =
𝑚𝑖+1

1 − 𝛽1
𝑖
. (2.55) 

The biased squared gradient is calculated as 

𝑆𝑖+1 = 𝛽2𝑆𝑖 + (1 − 𝛽2)𝐺, (2.56) 

and the unbiased squared gradient is 

�̂�𝑖+1 =
𝑆𝑖+1
1 − 𝛽2

. (2.57) 

Then the parameter updates are given by 

𝜃𝑖+1 = 𝜃𝑖 −
𝜂�̂�𝑖+1 

√�̂�𝑖+1 + 𝜖
. (2.58) 

 

2.4.7.6 Adamax 

An extension to Adam based on the infinity norm has been proposed81. Similar to 

Adam, Adamax requires two decay parameters, 𝛽1 and 𝛽2, the momentum is then 

calculated as 

𝑚𝑖+1 = 𝛽1𝑚𝑖 + (1 − 𝛽1)𝐺. (2.59) 

The weighted infinity norm is then calculated using 

𝑆𝑖+1 = max(𝛽2𝑆𝑖, |𝐺|) . (2.60) 

The learning rate is updated to 

𝜂𝑖+1 =
𝜂𝑖

1 − 𝛽1
𝑖
. (2.61) 

Finally, the parameter estimates are updated using 

𝜃𝑖+1 = 𝜃𝑖 −
𝜂𝑖+1 𝑚𝑖+1

𝑆𝑖+1 + 𝜖
. (2.62) 
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2.4.8 Explainable AI 

Explainability is a hot topic in AI. Deep learning algorithms are often black-box in 

nature; an input is given, and an output is returned without explanation for that 

output. For example, when using an image, the user of an algorithm may want to 

know precisely what areas of the image the algorithm is using to justify the output. 

Models that automatically extract features could potentially extract the wrong 

features, finding a pattern that "cheats" by looking at something that does not tell us 

anything about the outcome. One example of this is chest x-ray imaging, where 

patients are diagnosed as having or not having a lung condition. Patients with lung 

conditions may already need some intervention, such as ventilation or a chest drain; 

this equipment may be visible on the x-ray. A deep learning algorithm could 

potentially see this equipment and use that to classify patients instead of using the 

radiographical features. Model visualisation and explainability are vital in deep 

learning. Several methods exist that allow us to see what the algorithm looks at, 

such as class activation maps (CAMs), saliency maps, and Shapley values. 

In this thesis, I use saliency maps, in particular SmoothGrad.82 When using images, 

the output could be explained by finding which pixels in the image most strongly 

influence the algorithm. One common method to identify these important pixels is to 

generate a saliency map using gradients. 

I use binary classification as an example in this section, but the method extends to 

multiclass classification. Given an input image 𝐼, an algorithm computes an activation 

function 𝐹. If the activation is piecewise differentiable, then a saliency map can be 

constructed using the gradient of the activation function of the image 

 𝑆(𝐼) =
𝜕

𝜕𝑥
𝐹(𝐼). (2.63) 

 

In simple terms, this saliency map displays how much a small change in each image 

pixel would influence a change in the output. 

Using gradients in this way often results in noisy saliency maps. SmoothGrad 

reduces this noise by adding noise to the image and calculating the average of many 

saliency maps. The SmoothGrad saliency map, 𝑆𝑆𝐺 , is therefore given as 
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 𝑆𝑆𝐺(𝐼) =
1

𝑛
∑𝑆(𝐼 + 𝑁(0, 𝜎2)),

𝑛

𝑖=1

 (2.64) 

 

Where 𝑛 is the number of saliency maps to be averaged and 𝑁(0, 𝜎2) is the 

Gaussian distribution with mean 0 and variance 𝜎2. Due to the averaging of the 

multiple saliency maps, SmoothGrad results in less noisy saliency maps, which 

improves the interpretability and explainability of the deep learning algorithm.82 The 

idea behind SmoothGrad is simple but justifies why the method works in theory. The 

lack of quantitative performance measures may appear to be a major issue with the 

paper; however, as the authors explain, quantifying such a subjective problem is 

impossible. Nonetheless, qualitative results in the paper and subsequent studies 

back up the method, showing the apparent improvement that SmoothGrad provides 

with much clearer, more focused saliency maps. A large-scale study asking users to 

rank which qualitative method is best may provide some quantification of whether the 

method is an improvement; however, this inevitably would have its own biases.  

The final maps produced by SmoothGrad often produce clearer saliency maps as 

the random noise typically seen in saliency maps is averaged out. This simple trick 

provides a good solution to the problem of random noise in saliency maps; however, 

computing multiple saliency maps can greatly increase the computation time. 

The interpretation of these visualisations can be challenging. Oramas et al.83 

combined the explanation and interpretation of deep learning models by identifying 

relevant features for each class and averaging the visualisations of that set of 

features. During inference, the prediction is then presented along with the visual 

features used to make the prediction.  

Most methods rely on gradients or intermediate features, another approach 

proposed by Li et al.,84  uses a slot-attention based method. The fully-connected 

layer is replaced with a SCOUTER layer which contains an attention module for each 

class. A confidence is then obtained for each class. Using a novel SCOUTER loss, 

the model can explain why it chose one class and also why it did not choose another 

class. 
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McCoy et al.85 argue that explainability is not confined to AI algorithms and is 

actually part of a larger problem of treatment choice explainability in general. They 

conclude that explainability should not be sought uncompromisingly and that robust 

evaluation should be the main aim. 

Although explainability is undoubtedly essential in AI, it is not the focus of this thesis. 

Throughout the work I present here, I will use SmoothGrad as the maps are easy to 

produce and interpret. 

2.5 Age-related macular degeneration (AMD) 

I use age-related macular degeneration (AMD) as an example to demonstrate and 

evaluate the methods presented in this thesis.86 Images of AMD that I used were 

taken from the age-related eye disease study (AREDS). In this subsection, I first give 

a general background of AMD and the risk factors associated with AMD. I then 

discuss colour fundus photography, the imaging modality that I use in this thesis, 

before discussing the features of AMD visible on colour fundus images.  

2.5.1 Clinical features and risk factors 

AMD is a degenerative retinal condition and a leading cause of sight-loss worldwide. 

Damage is caused to the centre of the retina, which results in blurring and distortion 

of the central vision.87 AMD is classified into early (sometimes referred to as age-

related maculopathy because vision is not yet affected), intermediate, and late. 

Patients with early or intermediate AMD are at risk of developing late-stage or 

advanced AMD, resulting in severe loss of central vision.86 Around 196 million 

people are estimated to be living with AMD globally, with around 10.4 million of them 

suffering with vision impairment from end-stage AMD.87 88 There are two forms of 

late-stage AMD, atrophic (dry) and neovascular (wet). Repeated injections of anti-

vascular endothelial growth factor agents are an effective treatment for neovascular 

AMD; however, no treatment currently exists for atrophic AMD.87 89 90 Prognostic 

models predicting progression to end-stage AMD may help plan treatment for 

neovascular AMD and rehabilitation for atrophic AMD. 

There are several clinical risk factors associated with AMD. A systematic review by 

Chakravarty et al.11 identified commonly reported risk factors with varying strengths 

of evidence. Age, smoking status, cataract surgery, and a family history of AMD 
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were strongly associated with developing AMD. Body mass index (BMI), 

cardiovascular disease, hypertension, and higher plasma fibrinogen showed a 

moderate association. Other risk factors with weaker and more inconsistent 

associations included gender, ethnicity, diabetes, iris colour, cerebrovascular 

disease, and cholesterol levels. They concluded that only smoking, cataract surgery, 

and a family history of AMD were consistent risk factors. This systematic review 

highlighted the inconsistency in the reporting of AMD. Overall, the systematic review 

was well-conducted. The authors of the review conceded that they did not consider 

genetic or dietary factors; these factors are considered important in AMD. In their 

meta-analysis, the authors did consider whether the studies accounted for 

confounding; however, the method used to account for confounding was not 

assessed. Some studies may have reported that they adjusted for confounding 

variables but did not use appropriate methods. This highlights an issue with 

aggregate data meta-analysis, which may be solved using individual participant data 

meta-analysis.91 

The AREDS identified several risk factors for progression to late-stage AMD while 

controlling for age, gender, and treatment group. Factors associated with 

neovascular AMD included ethnicity and smoking. Factors associated with atrophic 

AMD included education, BMI, smoking, and the use of antacids. Cataract surgery 

has been associated with the risk of developing AMD; however, cataract surgery is 

not associated with the risk of progressing to advanced forms of AMD.92 

2.5.2 Colour fundus photography 

The imaging modality used for investigating AMD in this thesis is colour fundus 

photography. In 1851, Hermann von Helmholtz created his Augenspiegel or 

ophthalmoscope, as it is known in English. This invention allowed clinicians to view 

the interior surface of the posterior eye, known as the fundus. Coincidentally, 

Frederick Scott Archer invented the collodion process for photography in the same 

year. Ten years later, James Clerk-Maxwell produced the first colour photograph. 

These advances in optics and photography allowed the development of colour 

fundus photography. 

Jackman and Webster produced the first successful image of a living human retina in 

1886.93 Limited by exposure time and visible light, the image is basic, with only the 
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optic disc and the largest vessels visible. Although these images appear 

unimpressive by today's standards, they were incredibly exciting advances for the 

time. Due to further advances in photography, Friedrich Dimmer obtained much 

more detailed images in 1907, with an exposure time of as little as 10 seconds.94 

Modern fundus photographs are coloured and show much more detail. Figure 2.29 

shows how fundus photography has progressed. An example of a colour fundus 

image showing the main geography of a colour fundus photograph is shown in 

Figure 2.30. A cross-sectional diagram of the eye showing its main anatomical 

features is shown in Figure 2.31. 

 

(a)                                        (b)                                     (c) 

Figure 2.29: (a) Fundus photograph obtained by Jackson and Webster in 1886. (b) 

Fundus photograph obtained by Dimmer in 1907. (c) Colour fundus photograph 

taken from the AREDS dataset. 
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Figure 2.30: Example of a colour fundus photograph highlighting the main features. 

This image is taken from the AREDS dataset. 

 

Figure 2.31: Cross-sectional diagram of the eye showing the main features. 

2.5.3 AREDS 

The AREDS and AREDS2 were clinical trials investigating the risk factors of AMD 

and cataracts. These large-scale longitudinal studies evaluated the effect of vitamins 

on the progression of age-related eye diseases. The study was initially prompted by 
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the widespread use of vitamins in the United States to treat AMD and cataracts 

without clear evidence of their efficacy and safety.95 A total of 4,757 participants 

aged 55 to 80 years old were recruited for the study. Large amounts of demographic 

and clinical data were collected as well as colour fundus photographs. The 

photographs used in AREDS are stereoscopic to give a 3D effect; however, only the 

right stereoscopic image is used in this thesis. 

The main aim of AREDS was to assess the benefit of vitamins and supplements in 

patients with age-related eye conditions. The first AREDS found that the odds of 

developing advanced AMD in high-risk groups could be significantly reduced with 

antioxidants and zinc, with an odds ratio of 0.72 (95% CI: 0.52, 0.98) compared to a 

placebo.96 This mix of vitamins became the original AREDS formulation. AREDS2 

expanded on this work and found that adding lutein, zeaxanthin, DHA, and EPA to 

the original AREDS formulation gave no statistically significant reduction in the risk of 

progressing to advanced AMD over the AREDS formula alone, with a hazard ratio of 

0.89 (98.7% CI: 0.75,1.06). The authors concluded that the AREDS2 formula did not 

further reduce the odds of developing advanced AMD; however, lutein and 

zeaxanthin could replace carotenoids to reduce the risk of lung cancer in former 

smokers.97  

AREDS also examined the features of AMD identified on colour fundus imaging; I 

outline these in the next section. Another primary outcome of AREDS was a set of 

severity scores, which I discuss in Section 2.5.5. 

AREDS and AREDS2 have led to important conclusions either through reports 

published by the AREDS group or through external studies using the data collected 

by AREDS; however, there are some significant issues with the studies. The 

AREDS2 study population was enrolled from US clinical centres and consisted of 

97% white participants.98 As the efficacy of vitamin supplements depends greatly 

upon genetic factors;99 the findings are limited to a white US population. Additionally, 

participants were relatively well-nourished compared to the general population.96 100 

Report number 8 of AREDS acknowledges that the study population may differ from 

the general population and the effect on the generalisability of the results is 

unknown. Any conclusions made from the AREDS data may only apply to a well-

nourished, white, elderly US population. The AREDS2 formula is built upon the 
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original AREDS formula. As it had already been shown that the original AREDS 

formula significantly reduced the odds of progression to advanced AMD, the 

AREDS2 group determined it was unethical to have a group of participants taking no 

vitamin supplements. As a result, AREDS2 had no true control group.101 The original 

AREDS study reported no statistically significant increase in the risk of adverse 

events; however, AREDS2 found that the original formulation may increase the risk 

of developing lung cancer in former smokers. It is unclear why the original study did 

not identify this increased risk for former smokers. Additionally, AREDS did not meet 

its original endpoints, and the conclusions were based on unplanned post-hoc sub-

group analyses. This adds considerable bias to the results obtained in the original 

study. 

Despite the shortcomings of AREDS and AREDS2, the data and images collected by 

these studies form one of the most extensive publicly available longitudinal imaging 

datasets. For this reason, I chose to use the AREDS data to demonstrate the 

methods I have developed while acknowledging the limitations. 

 

2.5.5 Imaging features of AMD 

Several features of AMD are visible on colour fundus imaging as identified by the 

AREDS group.102 These features can be classed into three broad types: 

(1) Firstly, there are retinal elevations caused by retinal detachment. There are 

three categories of retinal elevation, serous sensory retinal detachment, 

retinal pigment epithelial detachment, and drusenoid pigment epithelial 

detachment. If a pigment epithelial detachment is dome-shaped, this suggests 

a serous pigment epithelial detachment. Shallow pigment epithelial 

detachments can be either serous or fibrovascular. Finally, irregular pigment 

epithelial detachments are probably fibrovascular. 

(2) Secondly, retinal pigment epithelial abnormalities may be observed. These 

include geographic atrophy, depigmentation (hypopigmentation), and 

increased pigmentation (hyperpigmentation). Geographic atrophy is 

characterised by a sharply demarcated area of the retinal pigment epithelium 

depigmentation. This area is circular or scalloped and, to meet the definition, 

should be greater than one-eighth the diameter of the optic disc. Areas of 
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pigmentation that are smaller than this, non-circular in shape, or appear 

around a subretinal fibrous scar are classified as depigmentation rather than 

geographic atrophy. Increased pigmentation appears as clumps of grey or 

black pigment beneath the retina. 

(3) Thirdly, yellow-whitish lipid deposits under the retinal pigment epithelium are 

called drusen. These drusen can vary greatly in shape and size. Some drusen 

may be small, round, and flat, while others are large, irregular, and thick. 

Drusen are classified by size, hardness, and area covered. Drusen can be 

small (< 63𝜇𝑚), intermediate (≥ 63𝜇𝑚 and < 125𝜇𝑚), or large (≥ 125𝜇𝑚). 

AREDS classified AMD into three main categories early, intermediate, and 

advanced.103 Early AMD is defined as having multiple small or intermediate 

drusen with no advanced AMD. Intermediate AMD is defined as extensive 

intermediate or large drusen with no advanced AMD. Advanced AMD is defined 

as having developed either geographic atrophy, neo-vascular disease, or both. 

Based on these categories, AREDS created a four-step AMD severity scale.102 

The first three stages are early/intermediate AMD. The fourth stage requires 

geographic atrophy (GA) in the central subfield (atrophic AMD), neovascular 

AMD, or both. Evidence of neovascular AMD includes fibrovascular pigment 

epithelial detachment, subretinal pigment epithelial haemorrhage, subretinal 

fibrous tissue, or photocoagulation. 

Other studies have also identified further changes caused by AMD in the optic 

disc. A study by Law et al. found that eyes with large areas of AMD were more 

likely to be classified as glaucomatous than eyes with smaller areas of AMD.104 

This study identified that optic disc changes caused by AMD can resemble 

glaucoma, making them difficult to identify, especially in patients with glaucoma. 

Optic disc pallor has also been associated with AMD, even in early-stage 

patients.12 Examples of how a patient may progress are shown in Figure 2.32. 
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Figure 2.32: Example longitudinal images of age-related macular degeneration. The 

first three images of each patient profile display early or intermediate AMD. The 

fourth image of (a) shows the patient does not progress, while (b), (c), and (d) show 

the patient progressing to advanced forms of AMD. These images are from AREDS. 
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2.6 COVID-19 diagnosis 

In Chapter 5, I demonstrate a novel part of my final prognostic model by using CT 

imaging taken during the COVID-19 pandemic. Although this is not directly related to 

my main aims, it is vital for me to assess the added benefit of the new method. There 

are three main methods for the diagnosis of COVID-19, these are lateral flow testing, 

RT-PCR, and radiographic assessment (CT, for example). A systematic review of 

lateral flow testing concluded that it has a high specificity, but the sensitivity can be 

highly variable, with values as low as 38.32% and as high as 99.19%.105 This 

sensitivity is found to be larger for symptomatic patients than for asymptomatic.106 107 

A study examining the real-life clinical sensitivity of RT-PCR described the clinical 

sensitivity of RT-PCR as ‘moderate at best’,108 with a sensitivity of 47.3% (95%CI: 

44.4, 50.3). From early in the pandemic, CT imaging has been considered the gold-

standard for the diagnosis of COVID-19,109 with a higher sensitivity than RT-PCR.110 

2.6 Prognostic models 

In 2013, a partnership of researchers met to unify prognosis research into a coherent 

framework. The prognosis research strategy (PROGRESS) framework was formed 

to improve the standard of prognostic research. Before the PROGRESS framework 

was developed, the terminology was often inconsistent, with poor reporting 

standards. PROGRESS identified four types of prognosis research:1 

(1) Overall prognosis111 

(2) Prognostic factors112 

(3) Prognostic models7 

(4) Predictors of treatment effect113 

Overall prognosis research aims to estimate the likely outcome of a disease for a 

group of people. For example, uveal melanoma is a form of cancer that develops in 

the choroid of the eye and can metastasise to other areas, such as the liver. Only 

around  70% of patients survive for five years following a clinical diagnosis.114 This 

informs us about the overall likely outcome for a group of patients and can be used 

to make healthcare decisions at a population level. For survival rates, this may mean 

decision-makers can allocate treatment resources based on the current number of 

patients diagnosed with the cancer. 
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Prognostic factor research aims to find what factors are associated with increased 

risk. For example, tumour thickness and proximity to the optic disc are associated 

with an increased risk of eye loss in uveal melanoma.115 These factors can be used 

to identify most at-risk individuals and develop effective treatments that target that 

factor.1 

Prognostic model research uses the identified prognostic factors to develop models 

that estimate the risk of a particular outcome in individual patients. In contrast to 

overall prognostic research, prognostic model research aims to predict the future 

outcome for each patient rather than for a group of patients. The importance of using 

observed factors to predict the likely outcome of a disease in an individual patient 

dates back as far back as Hippocrates.116 For example, the Liverpool uveal 

melanoma prognosticator online (LUMPO) was developed to predict metastatic 

death in patients diagnosed with uveal melanoma. The LUMPO model is a semi-

parametric Markov multi-state model and includes demographic, clinical, and genetic 

data as covariates. This model achieved a C-index of 0.862 (bootstrapped 95% 

confidence interval [0.84, 0.88]), and calibration curves show reasonable 

performance. A multicentre external validation study of LUMPO reported a pooled C-

index of 0.72 (0.68, 0.75). Calibration curves suggested that recalibration may be 

needed for some clinical settings. 

The final type of prognostic research aims to assess how treatments affect the 

prognosis in individual patients. This type of research investigates why some 

patients benefit from treatment while others do not by identifying the factors 

associated with improved treatment outcomes. For example, younger age is strongly 

associated with improved outcomes using anti-vascular endothelial growth factor 

(anti-VEGF) treatments for AMD.117 These studies help prevent unnecessary 

treatment for patients who will not benefit from it. The findings of these studies may 

be helpful but may not necessarily change clinical practice; for example, although 

younger patients have a greater benefit from anti-VEGF treatment, older patients still 

benefit. 

In this thesis, I focus on the third type of prognostic research, prognostic model 

development. Most prognostic models are developed using traditional statistical 

techniques; however, prognostic models are starting to be developed using more 
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novel machine learning methods, especially deep learning. The main advantage of 

machine learning is its ability to automatically incorporate varied data sources, such 

as images and unstructured text, into the model with many predictors. However, 

these also provide disadvantages as the algorithm's output needs to be interpreted 

to ensure that the algorithm is making sensible predictions. 

In this section, I review and critically appraise the published literature relevant to the 

methods presented in this thesis. 

2.6.1 Traditional statistical prognostic models 

The majority of prognostic models are developed using traditional statistical 

methods. These methods are well established and are suited to using easily 

extractable data such as demographics and clinical characteristics. In addition, these 

models are easily interpretable and can often be given as a written equation. 

One of the oldest prognostic models, still in use today, is the Apgar score2. The 

Apgar score was developed to assess the well-being of newborn babies. While the 

Apgar score has been found to be inadequate for assessing the risk of mortality on 

the individual level, it can predict an increase in relative risk for cerebral palsy. 

Another well-known example is the Framingham risk score. This model is used to 

predict the risk of developing cardiovascular disease in community settings.118 The 

Framingham risk score has been extensively validated; however, it has been found 

to overestimate the risk of developing cardiovascular disease.119 Therefore, 

recalibration of the model may be needed. 

Some prognostic models have been adopted into national guidelines. For example, 

the global registry of acute coronary events (GRACE) risk score120 121 is now 

recommended in NICE guideline 185 to assess the risk of future cardiovascular 

events. 

In the context of AMD specifically, a few models have been developed using 

traditional statistical methods. AREDS Report 17 developed a severity scale for the 

risk of developing advanced AMD.122 A 6-step drusen scale and a 5-step pigmentary 

abnormality scale were combined into a 9-step scale to estimate the 5-year risk of 

progressing to advanced AMD. Probabilities were obtained by calculating the 

percentage of patients who had progressed in each step group. Patients in step 
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group 1 are assessed as having a 0.3% probability of progression, and patients in 

step group 9 are estimated to have a 53.2% probability of progression in 5 years.  

The original gradings were compared with replicate gradings from other clinicians to 

display the reproducibility of the scale. The original and replicate gradings agreed in 

63.4% of eyes, with 63.4% agreement within one step and 93.6% agreement within 

two steps. The original and replicated scales also had an unweighted 𝜅 score of 0.58 

with a standard error (SE) of 0.015. This 𝜅 score can be interpreted as a moderate 

strength of agreement.123 This 9-step score is difficult to use and unsuitable for 

routine clinical examinations.124 Therefore, a second simplified score was developed 

and presented in AREDS Report 18.125  

The simplified score is given on the patient level rather than the eye level. Each eye 

is given one risk factor if there is one or more large drusen and another point if there 

are any pigment abnormalities. Summed across both eyes, the patient has between 

zero and four risk factors. Each patient’s estimated probabilities of progression are 

given as 0.5%, 3%, 12%, 25%, and 50% for zero to four risk factors, respectively. 

This simplified scale is much easier to calculate and understand, making it more 

usable in clinic. As part of AREDS2, the probabilities for the full and simplified 

severity scores were recalculated on the new data collected.126 The AREDS and 

AREDS2 5-year rates did not differ significantly, suggesting that the severity scale 

does not differ significantly between studies.  

There are several significant problems with the AREDS severity score, which reduce 

its usefulness. Firstly, the highest risk score only gives a 50% probability of 

progression. This may make it challenging to prioritise patients because even the 

most at-risk patients still only have a 50% probability of progression. Secondly, the 

probability of progression is a continuous outcome; categorising these continuous 

outcomes like this is inefficient and unnecessary.127 Categorising continuous 

predictors leads to a loss in information and power and results in models with poor 

predictive performance and clinical usefulness.128 Finally, the probabilities are 

presented as probabilities of progression for individual patients; however, the 

probabilities are the percentages of patients in each risk score group who have 

progressed. Under the PROGRESS framework, this is the first type of prognostic 

research which informs us about the proportion of patients progressing at the 
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population level. For the simplified score, 50% of patients on step 4 progress to 

advanced AMD; this does not inform us about the probability of progression of 

individual patients. This type of model may still be useful but should not be used on 

the individual patient level. 

Other models have been developed that are more suited to predicting individual 

patient-level progression. Many of these models are developed using data from 

AREDS as it is the largest available dataset with vast amounts of demographic, 

clinical, imaging, and genetic data available. 

Seddon et al.129 developed a model using Cox proportional hazards.130 Final 

predictors included genetic factors, environmental factors, and drusen size. Data 

was taken from AREDS, with 819 of 2937 included patients identified as progressing 

to advanced AMD. For five-year predictions, the best model attained an AUROC of 

0.876 (SE=0.012); for ten-year survival, the AUROC was 0.908 (SE=0.009) in the 

test sample. 

Another similar model using a survival analysis approach used ten genetic loci, age, 

sex, education, BMI, smoking status, and AMD status to predict AMD progression.131 

Data in this study were also taken from AREDS, with 834 of 2951 patients identified 

as progressing. The final model combining environmental and genetic factors  

achieved an AUROC of 0.911 for the 10-year prediction. The authors noted that the 

inclusion of genetic factors led to significantly improved predictions. 

A logistic regression model has also been proposed to predict AMD progression132. 

This study used data from a Korean population consisting of 10,890 patients aged 

over 50 years. Early AMD was found in 318 patients, and 157 of these were followed 

up for 4.4 years. Final model predictors included: drusen characteristics, hyper- and 

hypo-pigmentation, sex, age, smoking status, protein levels, and globulin levels. This 

model achieved an AUROC of 0.84 (95% CI: 0.75, 0.92). 

2.6.2 Two-stage models 

When features of progression can be observed, it is possible to use deep learning to 

extract features and then use a traditional statistical model. Four of the five models 

for AMD progression mentioned in the previous section include drusen 

characteristics as predictors.122 125 129 132 However, these characteristics can be 
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difficult and time-consuming to quantify and extract manually. One way to overcome 

this problem is to automatically extract features using a deep learning or similar 

method and then pass the extracted predictors to a deep learning model. Although 

deep learning may be used to extract the predictors, the prognostic model is still a 

traditional prognostic model. These two-stage methods have been used in diverse 

fields such as neurology133 and cardiology.134 

One model used this approach135 with spectral-domain optical coherence 

tomography (SD-OCT) for AMD progression. OCT is an imaging modality that uses 

light waves to create a cross-sectional image of the retina. Images can be taken in 

slices to form a 3D view of the retina.136 On OCT images, individual layers of the 

retina can be observed. De Sisternes et al. segmented the layers of the retina using 

thresholding and morphological operations.137 From these segmentations, 11 

features were quantified. A Poisson model was then used to predict the time to 

progression. Their proposed model attained a mean overall AUROC of 0.74 (95% CI: 

0.58, 0.85), with the best predictive performance occurring at 11 months with an 

AUROC of 0.92 (95% CI: 0.83, 0.98). This high performance appears impressive; 

however, it is unclear whether the prediction is particularly useful as 11 months may 

be an unusual time point for clinicians to choose to predict at. The large confidence 

intervals for the mean overall AUROC indicates that the model may not generalise 

well and may provide poor estimates at some time points.  

A similar method of feature extraction from SD-OCT images was used by Niu et 

al.;138 however, this model aimed to predict the GA growth using a random forest 

model.  For predicting GA growth in patients without signs of GA, the model attained 

a Sørensen-Dice score of around 0.74 (standard deviation (SD)=0.17). This model is 

interesting in that it does not just attempt to predict GA but also the growth of GA, 

which may provide some added utility to clinicians who may want to assess the 

possible extent of disease. 

Banerjee et al.135 also used a similar feature extraction method; however, they 

instead used an RNN consisting of LSTM, batch normalisation, and full-connected 

layers. Yim et al. noted that these two-stage models, with the image being 

segmented before classification, can help identify the anatomical changes that lead 

to a higher risk of progression139. 

https://en.wikipedia.org/wiki/Broderbund
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The main disadvantage of this two-stage approach is that the predictors must still be 

known and extractable, as the deep learning model extracting the features still 

requires annotated training data to train the algorithm. For volumetric data such as 

OCT images, the individual layers can be segmented and the volume easily 

estimated; however, automatically extracting these predictors is more difficult on 

colour fundus images. For AMD, the risk factors are not fully understood, and some 

important features of the image may be missed. However, deep learning can be 

used to automatically extract features from images;53 so the two stages can be 

combined into a single stage by using a single deep learning prognostic model that 

takes the raw images as input, extracts the important features, and estimates the risk 

of progression. 

2.6.3 Deep learning prognostic models 

Before the work presented in this thesis, some prognostic models were developed in 

deep learning. My work builds upon those previous methods. 

One of the first models using deep learning for prognostic modelling was 

DeepSurv,140, which merged a deep neural network with a Cox proportional hazards 

model.130  DeepSurv is not intended for imaging data and consists of a fully-

connected neural network followed by a survival layer. DeepSurv showed 

comparable or improved performance on simulated and real data experiments. The 

authors attributed the improved performance on some tasks to the improved 

flexibility of the model. The proposed method performed particularly well on more 

complex data with nonlinear features. This method was soon extended to imaging 

data with DeepConvSurv141. Replacing the fully-connected network with a CNN 

enables DeepConvSurv to better handle unstructured data such as images. For 

example, experiments were conducted on a dataset of pathological images of lung 

cancer. Due to the size of the images, they were split into patches. Compared with 

DeepSurv, this method showed an improved C-index of 0.629 versus a 0.602 

obtained using DeepSurv. 

Several models have been developed to predict progression to advanced AMD in 

particular. Most of these models use a single time point to predict the future 

progression, although more than one image may be used if there are multiple 

fields142 or the images are stereoscopic.143 
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Grassman et al.144 proposed an ensemble model composed of six CNNs (AlexNet, 

GoogLeNet, VGGNet, Inception-v3, ResNet101, and Inception-ResNet-v2). This 

model aimed to predict the patient’s probability of being in one of 13 classes at some 

future time point. The 13 classes consisted of the 9-step severity scale122, 

neovascular AMD, geographic atrophy, neovascular AMD and geographic atrophy, 

and ungradable images.  Using data from AREDS, each CNN was trained to predict 

one of the 13 classes. A random forest classifier was then used to ensemble the 

CNNs and obtain a final prediction. The algorithm attained an overall accuracy of 

63.3%. No measures of uncertainty, such as confidence intervals, were reported. 

The lack of uncertainty measures is a problem throughout deep learning and hinders 

the ability to truly assess how well a model performs. 

Babenko et al.143 aimed to predict the progression from early/intermediate AMD to 

neovascular AMD within one year. Stereo images were fed into the algorithm as 

pairs into the model based on Inception-v3. A late fusion approach was used to deal 

with the pairs, with each image fed into a separate Inception-v3 network with shared 

weights and the softmax activation applied; the output was then averaged. The 

model was trained and tested on AREDS with 10-fold cross-validation. The model 

attained an AUROC of 0.88 (SD=0.02), compared to 0.83 (SD=0.03) for the AREDS 

9-step scale and 0.78 (SD=0.2) for the AREDS 4-step scale. 

Traditional statistical models for AMD progression often use genetic data. A model 

proposed by Yan et al.145 combined both imaging and genetic data. The model 

aimed to predict if the patient would progress from early/intermediate to advanced 

AMD. Inception-v3 was used to predict the current AMD severity of the image. The 

severity score was then concatenated with the genetic data, and fully-connected 

layers were used to obtain an estimated probability of progression. 

Peng146 et al. combined a CNN with a Cox proportional hazards model130. The model 

consisted of four Inception-v3 architectures that extracted features of drusen and 

pigment abnormalities for the left and right eyes, resulting in 512 extracted features. 

Feature selection was then used to reduce the dimensionality. Cox proportional 

hazards models were then used to predict the progression to advanced AMD. The 

model achieved a five-year C-index of 0.86, exceeding the performance of two 

retinal specialists. 
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It is impossible to determine which of the above models is best, as they were all 

developed on slightly different datasets and often attempted to solve different 

problems. Different types of utilised data, such as stereoscopic images or genomics, 

may be used even when using the same dataset. 

So far, all the models I have described only use a single time point to predict the 

future progression of disease. A single time point shows the current state of the 

disease, but it does not show the rate of progression. 

To illustrate this, I use the example of a ball rolling along the floor. Looking at a 

single image of the ball in Figure 2.33 (a), it is impossible to know how fast it moves. 

If two images of the ball are taken at different times, such as in Figure 2.33 (b), the 

progression of the ball between the two points can now be observed. Images taken 

at different time points are longitudinal and are the main focus of my thesis. 

 

 

(a) 

 

(b) 

Figure 2.3: An example to illustrate the importance of longitudinal imaging data. In 

the first image (a), the blue ball may be predicted to reach the end of the image 
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before the red ball, as at 𝑡0 the blue ball has progressed further. When another time 

point is given in image (b), the red ball can be seen moving more quickly and will 

therefore reach the end before the blue ball. 

More recently, longitudinal images have been used to predict the progression of 

AMD147. Several OCT images were taken at 30-day intervals. A DenseNet 

architecture148 with shared weights was used to extract features from each OCT 

scan, and an RNN was used to capture the temporal relationship. Finally, a fully-

connected layer predicted the probability of progression. 

Incorporating longitudinal images will likely improve performance as it allows the 

algorithm to capture the rate of progression; however, previously, regular visit 

intervals are required. While even intervals may be possible in clinical studies, in 

real-world clinical settings, it is unrealistic as patients often miss visits or may have 

their intervals changed. Regular visits at exactly 30-day intervals for imaging are 

impossible in most applications. It is important to account for uneven intervals 

between visits to determine the rate of progression between longitudinal images. 

Figure 2.34 extends the example shown in Figure 2.33 to show the importance of 

accounting for the time intervals between images. As mentioned in Section 2.2.2, 

censoring is also an important consideration. It is likely that some patients will not 

progress to advanced AMD during the follow-up time and will be right-censored. 

Therefore, methods that deal with imaging data taken at uneven and irregular 

intervals and right-censored data are needed. 

 

Figure 2.34: The same red and blue balls from Figure 2.33 now have times showing 

that the intervals between them are not the same. It is important to consider the 

times to capture the rate of progression. 
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A previous method was developed by Wang et al.149 to deal with uneven intervals in 

an Alzheimer’s data set, although this method was not applied to imaging data. Their 

method simply concatenates the time times onto the end of the variables. This 

method is unsuitable for imaging data as there is no way to concatenate the image 

tensor with a time scalar. The method was not fully explained, making it difficult to 

determine how this could be adapted to imaging data. Other methods aiming to deal 

with the uneven interval problem have been developed using LSTM;150 151 however, 

these were both applied to patient health records. A new method is needed which 

can deal with imaging data.  

2.7 Summary 

In this chapter, I have briefly outlined how deep learning has been applied in 

medicine. Deep learning is a wide and varied field that has grown massively with 

many methodological developments in recent years. 

I have described how prediction models are a valuable tool for clinicians and can 

relieve pressure on resources. Prognostic models aim to predict the future outcome 

of disease and can be used to plan future treatment. For imaging data, deep learning 

shows excellent promise in prognostic modelling. 

Deep learning is a relatively new field with several barriers to implementation. Firstly, 

novel methods are being developed without any real-world validation. The developed 

models often suffer from overfitting and do not generalise well to other images 

outside the development dataset. External validation using prospective data in the 

intended setting is needed before models can be trusted. Secondly, models are often 

black-box and difficult to interpret; this leads to mistrust in the model by both 

clinicians and patients. Visualisation methods such as saliency maps may be able to 

reduce this black-box nature. Thirdly, these models are often complex and 

computationally expensive, meaning expensive machines may be needed to utilise 

the developed models. Methods to greatly reduce computational complexity are 

needed. 

Using a traditional statistical model may overcome these barriers; however, the main 

attraction of deep learning lies in its ability to automatically extract useful features 

from complex data sources such as images. The solution may be combining 
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statistics and deep learning to create more trusted and robust models that benefit 

from aspects of both disciplines. It is vital to test each algorithm thoroughly according 

to best practice guidelines and to visualise what the model is using to reach the 

given decision. 

At the start of my PhD, there were four main unsolved challenges that I aimed to 

overcome when developing a deep learning prognostic model for longitudinal 

imaging data: 

• First, the model must account for uneven intervals between visits. For 

example, while a patient may be asked to come into the clinic annually, 

patients will likely miss visits, or the clinician may choose to alter the 

screening interval. Additionally, if the model is used to set screening intervals, 

the interval will change based on the model prediction, and the model will be 

invalid after its first use. 

• Second, the model must account for missing data. For example, patients may 

miss visits, they may only have a baseline visit or images could be corrupted 

and lost. 

• Thirdly, it would be useful to make predictions at several future time points. 

This will allow clinicians to choose when they want the prediction to be made. 

• Finally, not all patients will likely be observed progressing, but they may 

progress after observation; this is known as right censoring. Right-censored 

data is common in clinical contexts. 

It may be possible to create multiple models to solve these issues; however, this 

would be inefficient as it would require splitting the training data into multiple sets 

corresponding to each model. Furthermore, many models would also be required to 

account for each combination of visit intervals and missingness, making this option 

impractical. 
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Chapter 3: Data 

Two types of dataset are used to demonstrate the methodology presented in this 

thesis. The first type is an ophthalmological dataset taken from AREDS, described in 

Chapter 2. The AREDS dataset consists of demographic, clinical, imaging, and 

genetic data from patients with AMD. I begin by using the imaging data, which are 

colour fundus images. I then use some of the demographic and clinical data in 

Chapter 6, to show how data other than imaging data can be incorporated into my 

models. 

The second type of dataset I used is a COVID-19 dataset. There are two datasets 

used here, one from hospitals in China used for model development and the second 

from hospitals in Russia used for external geographical validation. This dataset is not 

longitudinal or prognostic but was used to demonstrate one of the novel components 

of another prognostic model. The images are slices of computed tomography (CT) 

scans.  

3.1 AREDS 

The AREDS dataset is one of the most extensive publicly available longitudinal 

datasets. I have already described the study in Chapter 2 and some ground-breaking 

research resulting from it. The study recruited 4,757 participants aged 55 to 80 years 

old. I chose this dataset as it is one of the most comprehensive longitudinal imaging 

datasets with a follow-up of up to 10 years and is freely available from the National 

Eye Institute upon request.  

As mentioned in Chapter 2, AREDS and the follow-up study AREDS2 were long-

term studies by the US National Eye Institute, primarily assessing risk factors 

associated with AMD and cataracts.95 As well as studying the risk factors and 

prognosis of patients with AMD and cataracts, the studies also assessed the effects 

of nutrients on the progression of AMD and cataracts. Participants were randomly 

assigned to one of four arms: 

1. placebo 

2. zinc (80mg) and copper (2mg) 

3. vitamin C (500mg), vitamin E (400IU), and beta-carotene (15mg) 
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4. zinc (80mg), copper (2mg), vitamin C (500mg), vitamin E (400IU), and beta-

carotene (15mg) 

The main conclusion of the studies was that patients with intermediate AMD or 

advanced AMD in one eye only, who were assigned to the formulation in arm 4, had 

a 25% risk reduction in progression from intermediate to advanced AMD. There was 

no reduction in cataract risk observed in any of the arms. AREDS2 added omega-3 

fatty acid or lutein and zeaxanthin to the formulation, and no significant reduction in 

the risk of developing advanced AMD.152 

Although 4,757 patients were recruited in AREDS, not all of these were included in 

my work. One of the main reasons a patient may need to be excluded is that they 

have already progressed at baseline or they have no follow-up visits. It is impossible 

to predict progression for patients who have already progressed, and without at least 

one follow-up, we cannot know if the prediction was correct. The exact numbers of 

patients used for each of my developed models are given in the relevant chapters, 

as one model was able to account for missing visits and could therefore use more of 

the available data. 

3.1.1 Limitations of the dataset 

Although the AREDS and AREDS2 datasets are large-scale multi-centre studies and 

two of the best publicly available longitudinal datasets, they have significant 

problems.  

Firstly, the images were initially collected on film and later digitised. Unfortunately, 

the digitisation project resulted in minor artefacts visible on some images. Examples 

of two images showing artefacts caused by the digitisation process are shown in 

Figure 3.1. The algorithm may confuse these artefacts with features of AMD, leading 

to a wrong classification. Modern colour fundus photography is digital without the 

need for film, and any algorithms developed on the AREDS dataset may not 

necessarily generalise well to more modern photography. 
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Figure 3.1: Examples of images showing artefacts caused by digitisation. 

The AREDS dataset also contains large amounts of missing data. Images may be 

missing for many reasons, such as the patient progressing to advanced AMD, 

dropping out from the study, non-attendance at visits, or the image being lost. 

Explanations for missing data are not given, and some demographic and clinical data 

are left blank. Blank could mean the value is unknown, not collected, zero, or the 

same as the last visit for longitudinal data. For example, all patients have their 

smoking status at baseline recorded. The smoking status at each visit should then 

also be recorded; however, this is often left blank. This could mean that the clinician 

forgot to collect or record the smoking status, it could mean that the patient indicated 

they do not smoke, or it could mean that the smoking status has not changed from 

baseline. As the proportion of missingness is large and we do not know if the data is 

missing completely at random or not, there is no statistical method that can account 

for this missing data.153 This makes the variable unusable as it is unclear if the data 

are truly missing. However, for the missing images, we can assume that the images 

are missing at random, and I will test how many images may be removed before 

there is a significant reduction in model performance. The image quality may also 

cause issues. I was unable to ask clinicians for their opinion on each image in this 

dataset quality to obtain quantitative values; however, a study into image quality in 

the AREDS2 dataset found that only 0.7% of images were deemed ungradable by 

clinicians.154 
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3.2 COVID-19 

The COVID-19 data are used to demonstrate one of the methods I have developed. 

For this, I was able to obtain a training set and an external validation set. All the 

images used in this dataset are of computed tomography (CT) imaging. CT scans 

are made of many 2D images (slices) that give a 3D-like structure when combined. 

Some scans can be made up of as few as ten slices, while others may have as many 

as 500. This can cause a challenge in deep learning as many algorithms require the 

same number of images used in each patient.  

The first dataset is taken from a group of hospitals in Moscow, Russia155 and the 

second set is taken from a group of hospitals in China.156 This allowed me to perform 

external geographical validation and assess how the model may generalise to data 

from other countries. All data were retrospectively collected with the diagnosis made 

by expert consensus examining radiographical features of the scan. Examples of 

slices from a healthy and COVID-19 patient from the MosMed dataset are shown in 

Figure 3.2. The example images show how COVID-19 features may not necessarily 

be present in each slice of a diseased patient, and a slice-based approach to 

diagnosis may not be suitable. These two datasets were chosen as they are large-

scale, from two different countries, publicly available, and have been widely used. 

3.2.1 MosMed 

The training and internal validation sets were collected from a consortium of 

hospitals in Moscow, Russia.155 The scans were all performed between March 1, 

2020, and April 25, 2020. The dataset consisted of 254 healthy patients and 1,141 

patients with COVID-19. All images were included in the analysis. 
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(a) 

 

(b) 

Figure 3.2: Example slices of CT scans in the MosMed dataset from (a) a healthy 

patient and (b) a patient with COVID-19. In the two middle scans, COVID-19 features 

can be observed in patient (b), as highlighted by the orange arrows.  

3.2.2 Zhang et al. 

The external validation data are from a consortium of hospitals in China.156 All scans 

were performed between January 25, 2020, and March 25, 2020. The dataset 

contained many duplicate patients, and I removed scans so that each patient only 

had one scan. I found 243 healthy and 553 COVID-19 scans suitable for use. 

While the training dataset was ready to use, the external validation dataset had 

several issues I needed to address before evaluating any models on this set. Firstly, 

many scans were repeated in the dataset, with the same patient appearing more 

than once in the same set. This introduced significant bias as it artificially inflated the 

size of the dataset. I removed scans so that only one scan per patient remained. 

Secondly, many of the scans were not centred on the lungs and looked at other body 

parts which were higher or lower. Some scans did not contain any slices of the lung. 

I removed slices which did not show any lung. Thirdly, there was a mix of masked 

and unmasked scans in the dataset; I removed any masked scans. A flowchart 

showing the number of included patients is displayed in Figure 3.3. 
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Figure 3.3: Patients included in the external validation dataset. 

3.2.3 Unbalanced data 

In Chapter 4, I develop a novel activation function that aims to overcome unbalanced 

data. To test this activation function, I needed to obtain highly unbalanced data. At 

the start of the pandemic, we had many negative and a few positive patients; this 

gave me the perfect opportunity to test my idea. 

The first dataset I used was a balanced dataset, which would allow me to vary the 

level of imbalance to assess the effect. This widely used toy dataset consists of 

community-acquired pneumonia and healthy x-ray images.157 I used 1,583 images 

from each class. I then used 800 images for training, 200 for validation, and 583 for 

testing from each class. I then removed pneumonia-positive images to obtain 

pneumonia:healthy images at ratios of 1:10, 1:25, and 1:50. 

The second dataset is from the COVID-19 image data collection and contains 

COVID-19 positive x-rays.158 At the time of doing this piece of work, this was the 

biggest and most trusted source of COVID-19 images. For training and validation, I 

used images from the Italian Society of Radiology159 and images from other sources 

for testing. For healthy images, I used the ChestX-Ray dataset for training and 

validation,160 and images from Kermany et al.157 and the Shenzhen Hospital X-ray 

dataset161 for testing. Images which had distinguishing features, such as notes or 
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which were less than 256 pixels in either height or width, were removed. This 

resulted in 30 COVID-19 and 40,240 healthy images for training, 15 COVID-19 and 

20,120 healthy images for validation, and 84 COVID-19 and 1,907 healthy images 

for testing. In the training and validation set, this equated to a COVID-19:healthy 

ratio of 1:1341.  
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Chapter 4: Interval scaling 

In this chapter, I describe the development of a method to overcome the problem of 

uneven time intervals between visits. I proposed a novel interval screening 

mechanism that weights observations at time points closer to the prediction time as 

more important and informative than those further away. Here, I demonstrate how 

the novel mechanism can be incorporated into a deep learning model using the 

AREDS dataset and assess whether longitudinal imaging can improve the prediction 

of progression to advanced AMD. In all the examples I present to demonstrate my 

methods, I use three images taken at three time points to predict the outcome at a 

fourth time point for the same individual; however, any of the methods can be easily 

extended to any number of time points. 

The novel interval screening mechanism in this chapter was applied to a network 

using a GRU and posted to arXiv162 while under review and was then accepted to be 

published in BMJ Open Ophthalmology after implementing reviewer comments.163 I 

then developed a similar method replacing the GRU with a more straightforward 

method inspired by time series leads to a less computationally complex model with 

no significant loss in model performance. I presented this alternative method at 

MIUA 2021.164  

4.1 Introduction 

In Chapter 2, I presented a general overview of the currently available methods for 

prognostic modelling in deep learning. I discussed that most work focuses on using a 

single time point, and the model may benefit from using longitudinal data to capture 

the rate of disease progression. In particular, I highlighted some of the previous 

models for AMD prognosis, most notably the work of Babenko et al.143 and Yan et 

al.145, which used a single time point. Patients may progress at different rates for 

some diseases, and longitudinal imaging may be needed to capture this progression. 

In this chapter, I explore how longitudinal images may be used in deep learning and 

whether this can improve the prediction of AMD progression. 

In Chapter 2, I gave one example of longitudinal imaging data used in a deep 

learning prognostic model; however, the images were collected at even time 
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intervals.147 In reality, patients often visit the clinic at uneven intervals due to missed 

appointments, busy clinics, or their screening interval adjusted. Potential applications 

of prognostic models include aiding in setting screening intervals, which allows low-

risk patients to be seen less frequently; however, this would immediately invalidate 

models requiring even time intervals. Furthermore, ignoring the uneven intervals 

between visits is likely to reduce the accuracy of the predictions, as the model is 

given no frame of reference. Therefore, a method which can account for uneven 

intervals between screening was needed. It would also be useful to choose the 

future time point to predict. Finally, even when using a single time point, it would be 

helpful to be able to alter the time interval between the observation and prediction to 

choose the future prediction point. 

In the work presented in this chapter, my main aim was first to develop a method to 

predict disease progression using longitudinal images taken with different time 

intervals between observations. The method needed to allow a prediction to be 

made at any chosen future time and not a set future time point. I then applied this 

method to predict progression to advanced AMD and assessed whether adding 

additional time points improves performance or if a single observation is sufficient. 

Finally, I aimed to simplify the method to reduce the computational complexity of the 

model. 

4.2 Methods 

In this chapter, I describe two methods I developed to predict progression to 

advanced AMD using longitudinal imaging while accounting for uneven intervals 

between visits. 

To formalise the problem, given a set of 𝑁 images from a single patient 

(𝑋0, … , 𝑋𝑖, … , 𝑋𝑁) observed at times (𝑡0, … , 𝑡𝑖 , … , 𝑡𝑁) I aimed to predict whether the 

patient will have progressed by their next visit at 𝑡𝑁+1, where 𝑡𝑖+1 − 𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 

does not necessarily hold. This is a binary outcome, where 

𝑦 = {
1, if the patient progresses to advanced AMD,
0 if the patient does not progress.

(4. 1)  
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Both of the methods I present here consist of three main stages. First, I used a CNN 

with shared weights to extract features from each image; the feature vectors were 

then scaled to account for the uneven time intervals using a novel interval scaling 

mechanism. Finally, based on those scaled feature vectors, I predicted the 

probability of progression by a chosen time. The first method used a GRU, while the 

second aimed to reduce computational complexity by replacing the GRU with a more 

straightforward linear combination. Finally, I used a novel activation function for both 

methods I created to better deal with unbalanced data. 

In this work, I used three previous images (𝑁 = 3) to predict the diagnosis at a fourth 

time point. I compared both methods to assess whether the complexity reduction 

reduces performance. Overviews of both methods are shown in Figure 4.1. 
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(a) 

 

(b) 

Figure 4.1: Overviews of (a) the GRU network and (b) the VAR network. 

 

…+ 𝑡𝑛
∗  
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4.2.1 CNN 

As I described in Chapter 2, a CNN uses convolutional layers to reduce data 

dimensionality. Several layers, such as convolutional, pooling, and batch 

normalisation layers, can be used to reduce the image to a single vector of features. 

In this way, a CNN can be considered an automatic feature extractor that reduces 

the image to a single vector of features the algorithm finds useful or important. These 

features can then be passed to another layer, such as a fully-connected or recurrent 

layer, to obtain a probability of progression. 

I began by extracting features using a CNN for each image for both methods 

presented here. To reduce computational complexity, weights were shared between 

the CNNs; this means only one set of parameters needs to be trained. I chose to use 

Inception-v3165 pretrained on ImageNet.48 as it is relatively efficient and generalisable 

to many applications. The architecture and reasoning behind Inception-v3 are 

described in Chapter 2. After the convolutional layers, I reduced the representation 

of each image to a single vector using average pooling. Then I applied a dropout 

layer with a 50% probability. This results in three feature vectors, 𝐹1, 𝐹2, and 𝐹𝑁 , one 

for each of the three images 𝑋1, 𝑋2, and 𝑋𝑁, with each vector of length 2048. 

4.2.2 Interval scaling 

One of the main objectives of the thesis was to develop methods capable of dealing 

with uneven time points. To achieve this, I developed interval scaling. As previously 

discussed, visits closer to the prediction time are more likely to be useful to the 

algorithm than visits further away. Interval scaling weights the extracted features so 

that more recent features are given a higher priority; this enables the algorithm to 

better capture the rate of progression. 

For each sequence of images observed at times (𝑡0, … , 𝑡𝑖, … , 𝑡𝑁) and outcome 

prediction time 𝑡𝑁+1 I rescaled each time such that 𝑡𝑖
∗ = 1/(𝑡𝑁+1 − 𝑡𝑖). I then 

multiplied each feature vector by its corresponding 𝑡𝑖
∗ to create a scaled feature 

vector. This prioritises the observations closer to the prediction time, allowing the 

network to account for these uneven time intervals. This scaling also accounts for 

uncertainty in the model features caused by older, outdated observations, as 

features from distant time points will be given lower importance.  
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To demonstrate my interval scaling method, I will give a brief example. Patients may 

be observed at 0 years, 1 year, 4 years, and 6 years, with the patient having 

progressed to advanced AMD on the fourth observation. Defining the times as 𝑡0 =

0, 𝑡1 = 1, 𝑡2 = 4, and 𝑡3 = 6, the interval scaling values are given as 

𝑡0
∗ =

1

𝑡3 − 𝑡0
=

1

6 − 0
=
1

6
,

 𝑡1
∗ =

1

𝑡3 − 𝑡1
=

1

6 − 1
=
1

5
,  

 

𝑡2
∗ =

1

𝑡3 − 𝑡2
=

1

6 − 4
=
1

2
. (4. 2)

 

These values were then multiplied by the corresponding feature vector, 𝐹0,  𝐹1, and 𝐹3 

resulting in three rescaled feature vectors. 

Previous models developed using set intervals between visits could only predict 

specific future time points. For example, if patients are observed at yearly visits, the 

prediction can only be made one year in advance. To predict at other time points, 

another model needs to be developed. It would be useful to be able to pick any 

future time point to predict. With interval scaling, the future time point 𝑡3 can be set to 

any desired time using one model. Multiple values of the future prediction time point 

can be chosen to obtain probabilities of progression for a range of future time points. 

4.2.3 GRU 

The first method I developed uses a GRU to predict the probability of progression. 

As I discussed in Chapter 2, RNNs are suited to sequence data such as audio or 

video data. In this work, the multiple time points form a sequence; therefore, an 

RNN, such as GRU, may be suitable. 

The three feature vectors of length 2048 were concatenated into a 3 × 2048 matrix 

before being passed to the GRU with a single output unit. I used the tanh function for 

the activation function and the sigmoid function for the recurrent activation function. 

The GRU layer could be replaced by another RNN layer, such as LSTM; however, 

as discussed in Chapter 2, the GRU layer is much less computationally complex and 

often attains comparable performance. GRU may also be more stable if longer time 

sequences are used in future studies. 
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4.2.4 VAR 

Although GRU layers are less computationally complex than LSTM layers, they are 

still relatively complex. Therefore, a complex recurrent layer may not be needed and 

could be replaced with a simpler solution. I developed an alternative solution inspired 

by vector autoregression (VAR) in time series analysis. 

From the CNN, there are three feature vectors from previous time points. Instead of 

predicting the future outcome based on those vectors, I aimed to use the previous 

feature vectors to produce a future feature vector. This new feature vector is then 

used to predict the outcome. 

Autoregressive models take previous values and perform regression upon them to 

predict the next value in the sequence. These models are commonly used in 

meteorology to predict daily temperatures and in finance to predict stock prices. The 

pth order autoregressive model can be written as 

 𝑥𝑛+1 = 𝑎𝑛+1 + 𝑎𝑛𝑥𝑛 +⋯+ 𝑎𝑛−𝑝𝑥𝑛−𝑝 + 𝜖𝑡, (4.3) 

where 𝑥𝑖 is the value at time 𝑖, 𝑎𝑖 is the parameter associated with 𝑥𝑖 to be estimated 

and 𝑒𝑡 is some stationary noise. 

Autoregressive models can be extended to the multivariate case using vector 

autoregression 

 𝒙𝒏+𝟏 = 𝒂𝒏+𝟏 + 𝐴𝑛𝒙𝒏 +⋯+ 𝐴𝑛−𝑝𝒙𝒏−𝒑 + 𝒆𝒕, (4.4) 

with the values at each time point now being vectors 𝒙𝑖 and their corresponding 

parameters 𝐴𝑖 being matrices. VAR considers the relationship between features 

rather than just considering each feature separately. 

As with the GRU method, I utilised interval scaling to account for uneven time 

intervals. Each feature vector in the VAR equation was weighted to give features 

closer to the prediction time greater importance than those further away. The interval 

scaling was then given by 𝑡𝑖
∗ = 1/(𝑡𝑛+1 − 𝑡𝑖). Therefore, the VAR equation with the 

interval scaling applied is given by 

 𝒙𝒏+𝟏 = 𝒂𝒏+𝟏 + 𝑡1
∗𝐴1𝒙𝟏 +⋯+ 𝑡𝑛−𝑝

∗ 𝐴𝑛−𝑝𝒙𝒏−𝒑 + 𝒆𝒕. (4.5) 
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The future prediction time point can be chosen by altering 𝑡𝑛+1. This resulted in a 

single feature vector which was then used to predict the probability of progression. 

For this, I used a fully-connected layer with one output unit. 

In traditional statistics, the parameters are estimated using methods such as ordinary 

least squares or Newton’s method. In this work, I incorporated the parameter 

estimation into the deep learning framework and used backpropagation to learn the 

parameters. 

4.2.5 Single time point 

One of my main objectives was to assess whether including multiple time points 

improves performance over using a single time point. I compared my novel multiple 

time point methods with a single time point method. A GRU layer cannot be used for 

the single time point model, so I replaced the GRU with a fully connected layer with a 

single output unit. Interval scaling was applied to the single time point to account for 

the difference in times between the single observation and the outcome time; this 

allows for any future time point to be chosen, similar to my longitudinal methods. To 

ensure fair comparisons, all other hyperparameter settings remained the same. 

4.2.6 GEV activation 

During my studies, I encountered the issue of highly unbalanced data. When 

datasets have one class which significantly outweighs the others, the model tends to 

overfit on the dominant class. Methods to overcome this problem include 

oversampling the underrepresented class or undersampling the overrepresented 

class. Unfortunately, these resampling methods often lead to even more overfitting 

and often do not adequately alleviate the problem. Other possible solutions include 

reweighting the loss function or using the focal loss.69 

I proposed an alternative solution based on the Generalised Extreme Value (GEV) 

theory.166 Instead of focusing on the loss, my solution focuses on the activation 

function. The activation function is based on the GEV distribution and is given by 

𝑓(𝑥) =

{
 
 

 
 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−

𝑥 − 𝜇

𝜎
)) , 𝑖𝑓 𝜉 = 0,

𝑒𝑥𝑝 (− (1 + 𝜉
𝑥 − 𝜇

𝜎
)
−
1
𝜉
) , 𝑖𝑓 𝜉 ≠ 0,

(4.6) 
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where 𝜇, 𝜎, and 𝜉 are parameters to be estimated by the deep learning algorithm. 

The GEV activation can be used as a direct replacement for the sigmoid activation 

function and showed significantly improved performance in experiments when the 

classes are extremely imbalanced. When the data is balanced, the GEV activation 

performs similarly to the sigmoid activation.166 

The parameters 𝜇, 𝜎, and 𝜉 can be initialised to be approximately the sigmoid 

function. To find suitable initial parameters, I used non-linear least squares with the 

Gauss-Newton algorithm to find parameters of the GEV function, which 

approximates the sigmoid curve. The parameters that most closely approximate the 

sigmoid activation are 𝜇 = −0.590813, 𝜎 = 1.660529, and 𝜉 = −0.273071. A graph 

showing the sigmoid and the GEV activation with these parameters is shown in 

Figure 4.2. Initialising the GEV activation parameters to these values means that the 

model output will be similar to using the sigmoid activation during the early stages of 

training. As training progresses, the GEV curve changes from the sigmoid curve to 

adapt to the unbalanced data. 

I have also extended the GEV activation function to the multiclass problem with the 

multiclass generalised extreme value (mGEV) activation function.167 The mGEV 

begins with the GEV activation before normalising the probabilities 

𝑚𝐺𝐸𝑉(𝐺𝐸𝑉) =
𝐺𝐸𝑉

∑ 𝐺𝐸𝑉𝑖
. (4.7) 

The mGEV activation function showed improved performance over the softmax 

activation on a multiclass classification task with highly unbalanced classes. 

As the GEV activation is a replacement for the sigmoid activation, it could also 

replace the sigmoid function in the swish activation function. I used the GEV 

activation as the final activation for both the GRU and the VAR models. 

In the following subsection, I give the results of experiments showing that the GEV 

activation function can outperform the sigmoid function with and without 

oversampling.  
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Figure 4.2: Sigmoid and GEV activation with parameters set to approximate the 

sigmoid. 

4.2.6.1  GEV Experiments 

Using the datasets described in Section 3.2.3, I aimed to test whether the GEV 

activation is better than the sigmoid function with and without oversampling. 

Firstly, results on the balanced dataset are shown in Table 4.1. The results show that 

the sigmoid without oversampling works reasonably well up to a ratio of 1:10; 

however, with an imbalance ratio of 1:25, the sensitivity is significantly lower, as can 

be seen from the 95% confidence intervals. The sigmoid activation with sampling 

performs better with reasonable performance up to a ratio of 1:25; however, with a 

balance of 1:50, oversampling fails and performs worse than using sigmoid alone. 

My novel GEV activation function maintains good performance across all levels of 

imbalance, although there is still some loss in performance.  

These results highlight the danger of overfitting when using oversampling. At the 

1:50 ratio, using the sigmoid activation with oversampling achieves perfect 

specificity, but the sensitivity is massively lowered. It seems that oversampling at 

higher levels of imbalance may actually make performance worse.  
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Table 4.1: Model performance on the balanced set at different levels of imbalance 

using the sigmoid activation, the sigmoid activation with oversampling, and my GEV 

activation function.  

Ratio 

P:N 
Method AUROC Sensitivity Specificity 

1:1 

Sigmoid 
0.993 

(0.990, 0.996) 

0.962 

(0.947, 0.978) 

0.962 

(0.947, 0.975) 

Sigmoid + OS - - - 

GEV 
0.994 

(0.991, 0.997) 

0.966 

(0.943, 0.980) 

0.967 

(0.953, 0.975) 

1:10 

Sigmoid 
0.975 

(0.966, 0.983) 

0.919 

(0.897, 0.941) 

0.947 

(0.929, 0.965) 

Sigmoid + OS 
0.981 

(0.975, 0.970) 

0.930 

(0.909, 0.950) 

0.933 

(0.913, 0.953) 

GEV 
0.985 

(0.978, 0.991) 

0.959 

(0.943, 0.975) 

0.959 

(0.943, 0.975) 

1:25 

Sigmoid 
0.916 

(0.961, 0.981) 

0.792 

(0.760, 0.825) 

0.954 

(0.937, 0.971) 

Sigmoid + OS 
0.959 

(0.948, 0.970) 

0.875 

(0.848, 0.902) 

0.923 

(0.901, 0.944) 

GEV 
0.971 

(0.961, 0.981) 

0.919 

(0.897, 0.941) 

0.966 

(0.951, 0.980) 

1:50 

Sigmoid 
0.609 

(0.575, 0.644) 

0.419 

(0.378, 0.459) 

0.931 

(0.911, 0.952) 

Sigmoid + OS 
0.529 

(0.520, 0.539) 

0.058 

(0.039, 0.077) 

1.0 

(1.0, 1.0) 

GEV 
0.941 

(0.928, 0.954) 

0.828 

(0.798, 0.859) 

0.937 

(0.917, 0.956) 

 

Next, I performed experiments comparing the sigmoid activation and my GEV 

activation on the real imbalanced dataset. Results are shown in Table 4.2. In this 

case, there is a non-statistically significant increase in the AUC, with an increase in 
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sensitivity and a decrease I specificity. These results may be surprising as it seems 

that the GEV does not provide much advantage based on AUROC; however, the 

GEV provides a better balance between sensitivity and specificity, indicating that 

overfitting is reduced. 

Table 4.2: Model performance using the sigmoid and GEV activation on the 

unbalanced x-ray dataset. 

Activation AUROC Sensitivity Specificity 

Sigmoid 
0.750 

(0.690, 0.809) 

0.488 

(0.381, 0.595) 

0.932 

(0.921, 0.944) 

GEV 
0.820 

(0.770, 0.870) 

0.798 

(0.712, 0.884) 

0.778 

(0.759, 0.796) 

 

Finally, using the CT imaging dataset, results for the sigmoid activation and GEV 

activation are shown in Table 4.3. The model using the sigmoid activation on this 

dataset classified all images as healthy; this model is clinically useless. The model 

using the GEV activation gave much more balanced results, although the results 

may still not be good enough for clinical use.  

Table 4.3: Model performance using the sigmoid and GEV activation on the 

unbalanced CT dataset. 

Activation AUC Sensitivity Specificity 

Sigmoid 
0.561 

(0.502, 0.620) 

0.0 

(0.0, 0.0) 

1.0 

(1.0, 1.0) 

GEV 
0.675 

(0.621, 0.730) 

0.628 

(0.561, 0.695) 

0.651 

(0.579, 0.723) 

 

These experiments suggest that the GEV activation can perform at least as well as 

the sigmoid activation function and, when the data is unbalanced, can give the model 

a much better balance between sensitivity and specificity. 
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4.2.7 Loss function 

Several possible choices for loss functions were described in Section 2.4.4. For 

binary classification, the binary cross-entropy loss function is most commonly used; 

however, for the reasons I have discussed, I chose to use the MSE. To reduce 

overfitting, I made two important changes to the usual method of calculating the 

MSE. Firstly, I weighted the loss to help account for the unbalanced data. For the 

negative cases, I used the weighting 

 𝑤0 =
1

𝑛0
×
𝑛

2
, (4.8) 

for the positive cases, I used 

 𝑤1 =
1

𝑛1
×
𝑛

2
, (4.9) 

where 𝑛0 is the total number of negative cases, 𝑛1 is the total number of positive 

cases, and 𝑛 = 𝑛0 + 𝑛1 is the total number of cases. This class weighting can be 

combined with the GEV activation to deal with unbalanced data. I also transformed 

the target labels such that the negative and positive labels are 

 𝑝0 =
1

𝑛0 + 2
 (4.10) 

and 

 𝑝1 =
𝑛1 + 1

𝑛1 + 2
. (4.11) 

This rescaling is based on Bayes’ rule applied to the out-of-sample data and was 

proposed by Platt to reduce overfitting.168 

4.2.8 Data and preprocessing 

I used data from AREDS, which is described in Chapter 3. I included eyes with three 

previous visits with early/intermediate AMD and a fourth visit showing either 

early/intermediate or advanced AMD. This resulted in 5,144 eyes in the dataset, with 

641 (12.5%) eyes progressing to advanced AMD. Eye profiles were split into 60% for 

training, 20% for validation, and 20% for testing on the patient level. This data split 

was stratified, so each set had 12.5% progressing eyes. This data split is shown in 

Table 4.4. 
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All images were cropped to remove the excess black background around the colour 

fundus image. During training, random augmentations were applied to the images to 

improve the generalisability of the model to unseen images. These random 

augmentations were a brightness adjustment of between 80% and 120%, a rotation 

of ±10 degrees, and a random flip in the horizontal and vertical directions. All images 

were then resized to 299 × 299 pixels using bilinear interpolation, the default image 

size for Inception-v3. Finally, pixel values were divided by 255 to rescale between 0 

and 1. 

Table 4.4: Number of eyes in each data split. 

 Training Validation Testing Total 

Progressing 385 128 128 641 

Non-progressing 2701 901 901 4503 

Total 3086 1029 1029 5144 

 

4.2.9 Performance metrics 

I have described the performance measure for survival models in 0 2. I assessed the 

models using the C-index for discriminative performance across all time points. I 

used the time-dependent censored AUROC at one, two, and three years for the 

performance at individual time points. The calibration at one, two, and three years 

was assessed using calibration curves. Finally, I used decision curves to show the 

clinical utility over the treat none and treat all approaches. 

4.2.10 Training and inference 

All training and inference were performed on a Linux machine running Ubuntu 18.04, 

with 32 GiB of available memory and a 12GiB Titan X GPU. Python 3.6 Tensorflow 

2.4.2 was used for development, and R 4.1.2 was used for analysis.  

The censored C-index was calculated using the rcorr.cens function in the Hmisc 

package. Dynamic AUROCs were calculated using the censROC package with 95% 

confidence intervals calculated using 2000 sample bootstrapping. Finally, survival 

calibration curves were created using the rms package; the rmda package was used 

to create the decision curves. 
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4.3 Results 

In this section, I present results for the GRU model and then for the VAR model 

using both two and three time points. There are no similar previously proposed 

models that can be used with the differing time intervals between observations for 

me to use for comparison. Instead, for comparison, I present results using a single 

time point with a fully-connected layer to assess whether the additional time points 

are needed. In all models, I used the proposed interval scaling mechanism, which 

enables observations and predictions at any time point to be used. Results are 

presented for predictions at one, two, and three years to display the ability of the 

interval scaling to choose the prediction time. Finally, I assessed the time taken to 

compute the GRU and VAR components of the models to assess if one method is 

faster to compute than the other. 

4.3.1 GRU 

The validation dataset was used to select the best model based on the lowest loss; 

the results are likely to be biased. Results on the testing dataset are likely to be less 

biased; however, they are taken from the same population, so some bias will remain. 

Results on the validation dataset show that the model using a single time point 

achieved excellent results with a C-index of 0.914 (95%CI: 0.889, 0.940). When 

using two time points, the method achieved a C-index of 0.898 (95% CI: 0.869, 

0.928). Using three time points, the C-index was 0.897 (95% CI: 0.868, 0.925). The 

single time point method attained a C-index of 0.862 (0.826, 0.897) on the testing 

data. The GRU method with two time points had a C-index of 0.889 (0.856, 0.922) 

and a C-index of 0.884 (0.849, 0.919) when using three time points.  

Full results, including time-dependent AUROCs at one, two, and three years are 

shown in Table 4.5 and Table 4.6. ROC curves are shown in Figure 4.3. The true 

positive rate and false-positive rates plotted against risk thresholds are shown in 

Appendix A. 
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Table 4.5: Results using the GRU model with two and three time points and the fully-

connected model for one time point on the validation dataset. 

Number of time points C-index Years AUROC 

1 0.914 (0.889, 0.940) 

1 0.916 (0.887, 0.940) 

2 0.942 (0.920, 0.963) 

3 0.940 (0.918, 0.961) 

2 0.898 (0.869, 0.928) 

1 0.900 (0.868, 0.929) 

2 0.931 (0.899, 0.961) 

3 0.933 (0.898, 0.96) 

3 0.897 (0.868, 0.925) 

1 0.899 (0.869, 0.925) 

2 0.931 (0.909, 0.963) 

3 0.930 (0.906, 0.961) 

 

Table 4.6: Results using the GRU model with two and three time points and the fully-

connected model for one time point on the testing dataset. 

Number of time points C-index Years AUROC 

1 0.862 (0.826, 0.897) 

1 0.869 (0.813, 0.905) 

2 0.929 (0.895, 0.954) 

3 0.954 (0.931, 0.974) 

2 0.889 (0.856, 0.922) 

1 0.888 (0.850, 0.919) 

2 0.95 (0.927, 0.972) 

3 0.964 (0.944, 0.983) 

3 0.884 (0.849, 0.919) 

1 0.893 (0.859, 0.925) 

2 0.947 (0.924, 0.967) 

3 0.965 (0.945, 0.983) 

 

The calibration curves, shown in Figure 4.4, Figure 4.5, and Figure 4.6, indicate that 

all models are poorly calibrated. The risk is overestimated in all of the developed 

models, leading to overtreatment and wasted resources. Therefore, the risks need to 

be recalibrated using methods such as isotonic regression before the model can be 

used in a clinical setting.  
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Finally, decision curves are shown in Figure 4.7. These decision curves show that all 

models provide improved net clinical benefit over the treat-all or treat-none 

approaches in both the validation and testing sets. However, the models using two 

and three time points do not provide an improved net benefit over using the single 

time point method with the interval scaling. 
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(a)                                                                     (b) 

 

(c)                                                              (d) 

 

(e)                                                        (f) 

Figure 4.3: ROC curves for the single time point (blue) and GRU models with two 

(red) and three (green) time points on the validation dataset at (a) one year, (b) two 

years, and (c) three years and on the testing dataset at (d) one year, two years, and 

(f) three years. Confidence bands were calculated using 2000 sample bootstrapping. 
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(a)                                                             (b) 

 

(c)                                                        (d) 

 

(e)                                                                 (f) 

Figure 4.4: Calibration curves for the single time point model on the validation 

dataset for predictions at (a) one year, (b) two years, and (c) three years and on the 

testing dataset for predictions at (d) one year, two years, (f) and three years. 
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(a)                                                              (b) 

 

(c)                                                               (d) 

 

(e)                                                                 (f) 

Figure 4.5: Calibration curves for the GRU model with two time points model on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, two years, (f) and three 

years. 
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(a)                                                                (b) 

 

(c)                                                           (d) 

 

(e)                                                                 (f) 

Figure 4.6: Calibration curves for the GRU model with three time points model on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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(a)                                                               (b) 

 

(c)                                                             (d) 

 

(e)                                                               (f) 

Figure 4.7: Decision curves for the single and GRU models on the validation dataset 

at (a) one year, (b) two years, and (c) three years and on the testing dataset at (d) 

one year, (e) two years, and (f) three years. Confidence bands were calculated using 

2000 sample bootstrapping. 
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4.3.2 VAR 

Using the VAR method, the model attained similar results as the GRU model. The 

single time point method results are the same as obtained in the GRU model 

experiment and are repeated in the tables for comparison.  

For the validation dataset, using two time points, the VAR method achieved a C-

index of 0.898 (95% CI: 0.868, 0.928). Using three time points, the C-index was 

0.897 (95% CI: 0.868, 0.925). For the testing data, the VAR method with two time 

points had a C-index of 0.889 (0.856, 0.922) and a C-index of 0.884 (0.849, 0.919) 

when using three time points.  

Full results, including time-dependent AUROCs at one, two, and three years are 

shown in Table 4.7 and Table 4.8. ROC curves are shown in Figure 4.8. The true 

positive rate and false-positive rates plotted against risk thresholds are shown in 

Appendix A. 

As with the GRU method, the calibration curves show systematic overestimation of 

risk by all models, as displayed in Figure 4.9 and Figure 4.10. These models would 

need to be updated prior to being deployed. Figure 4.11 shows that the models 

provide improved clinical utility over the treat-all and treat-none methods, similar to 

the GRU models. 

Table 4.7: Results using the VAR model with two and three time points and the fully-

connected model for one time point on the validation dataset. 

Number of time points C-index Years AUROC 

1 0.914 (0.889, 0.940) 

1 0.916 (0.887, 0.940) 

2 0.942 (0.920, 0.963) 

3 0.940 (0.918, 0.961) 

2 0.917 (0.893, 0.942) 

1 0.923 (0.895, 0.946) 

2 0.950 (0.929, 0.970) 

3 0.949 (0.927, 0.968) 

3 0.908 (0.881, 0.935) 

1 0.914 (0.885, 0.939) 

2 0.944 (0.921, 0.965) 

3 0.942 (0.917, 0.963) 
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Table 4.8: Results using the VAR model with two and three time points and the fully-

connected model for one time point on the testing dataset. 

Number of time points C-index Years AUROC 

1 0.862 (0.826, 0.897) 

1 0.869 (0.813, 0.905) 

2 0.929 (0.895, 0.954) 

3 0.954 (0.931, 0.974) 

2 0.892 (0.857, 0.927) 

1 0.895 (0.854, 0.928) 

2 0.947 (0.923, 0.970) 

3 0.958 (0.936, 0.977) 

3 0.892 (0.859, 0.924) 

1 0.900 (0.867, 0.929) 

2 0.942 (0.920, 0.962) 

3 0.963 (0.945, 0.980) 
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(a)                                                                 (b) 

 

(c)                                                                (d) 

 

(e)                                                              (f) 

Figure 4.8: ROC curves for the single time point (red) and VAR models with two 

(green) and three (blue) time points on the testing dataset at (a) one year, (b) two 

years, and (c) three years and on the testing dataset at (a) one year, (b) two years, 

and (c) three years. Confidence bands were calculated using 2000 sample 

bootstrapping. 
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(a)                                                                  (b) 

 

(c)                                                              (d) 

 

(e)                                                        (f) 

Figure 4.9: Calibration curves for the VAR model with two time points model on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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(a)                                                               (b) 

 

(c)                                                                (d) 

 

(e)                                                                  (f) 

Figure 4.10: Calibration curves for the VAR model with three time points model on 

the testing dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, I two years, (f) and three 

years. 
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(a)                                                           (b) 

 

(c)                                                             (d) 

 

(e)                                                           (f) 

Figure 4.11: Decision curves for the single and VAR models on the validation dataset 

at (a) one year, (b) two years, and (c) three years and on the testing dataset at (d) 

one year, (e) two years, and (f) three years. Confidence bands were calculated using 

2000 sample bootstrapping. 
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4.3.3 Saliency maps 

In this section, I briefly show saliency maps for the GRU and VAR models to check if 

the model is correctly identifying the expected features. I created these maps using 

SmoothGrad,82 with 20 samples and a noise of 0.2. As discussed in Chapter 2, the 

most prominent features for AMD are drusen; optic disc characteristics may also be 

useful in the classification.  

The first set of saliency maps, shown in Figure 4.12, is for a patient progressing after 

one year. The GRU model correctly identified that the patient would progress with 

86.2% probability; the VAR model also correctly predicted that this patient would 

progress with 82.4% probability. Figure 4.13 shows a patient progressing after two 

years. The GRU predicted the patient would progress with a probability of 72.7%, 

while the VAR model predicted a probability of progression at two years of 72.1%. 
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(a) 

 

(b) 

 

(c) 

Figure 4.12: Saliency maps for a progressing patient for the three time point models 

showing (a) the original image, (b) saliency maps for the GRU model, and (c) 

saliency maps for the VAR model. 
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(a) 

 

(b) 

 

(c) 

Figure 4.13: Saliency maps for a progressing patient for the three time point models 

showing (a) the original image, (b) saliency maps for the GRU model, and (c) 

saliency maps for the VAR model. 

 

These saliency maps show that the algorithm identified the drusen visible in the 

image. The optic disc is also highlighted as useful in the prediction in the second 

patient. This indicates that the algorithms successfully learned the correct features 
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within the images. Although the VAR model is slightly less confident in its 

predictions, the saliency maps appear more precise, with the drusen more 

prominently highlighted. 

4.3.4 Computational complexity 

The GRU layer has 6,153 parameters, while the VAR layer has 12,587,009 

parameters. Therefore, the non-statistically significantly improved performance may 

not be worth the additional parameters; however, the VAR layer is much simpler than 

the complicated GRU layer. Therefore, the simpler VAR layer may be easier and 

faster to compute than the complicated GRU layer. 

To test if one layer is faster than the other to compute, I ran the top layers of each 

network 1000 times each and compared the time taken for inference. As the bottom 

of both networks is the same, consisting of a CNN and pooling layers, I removed the 

bottom layers and only compared the VAR and GRU classification layers.  

The GRU layers took an average of 0.0579s per inference, and the VAR layers took 

an average of 0.0535s per inference. This is a difference of 0.0044s. I used Welch’s 

two-sample t-test to test whether this difference is statistically significant. The t-test 

gave a p-value of 1.68e-5 and 95% confidence intervals of (0.0024, 0.0064), 

indicating that the new VAR layer takes significantly less time for inference despite 

having many more parameters. 

4.4 Discussion 

The results show that using a single time point to predict progression to advanced 

AMD provides acceptable discriminative performance. Including multiple time points 

in this particular example did not significantly alter performance. However, this may 

not necessarily be true in all cases, and extra time points may benefit some 

applications. This highlights the need to assess whether more complex longitudinal 

models are justified. In addition, external validation is required to confirm whether 

this conclusion generalises to other data outside of the population. 

There are many reasons that longitudinal data may not provide significantly 

improved predictions. Firstly, most patients with AMD may progress at similar rates, 

or the difference may not be observable over a three-year interval. A single 

observation may be enough to estimate the rate of progression. Secondly, there may 
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be other clinical and demographic factors which affect progression. The inclusion of 

these other factors in the model may improve the prediction. 

Despite the conclusion that a single time point appears to be sufficient, my proposed 

interval scaling mechanism can still be used for single time points, allowing any 

future time point to be selected for prediction. In my work, I have only shown results 

for one, two, and three years into the future; however, the predictions could be made 

at more regular intervals or further into the future, such as at the five-year mark. 

Sufficient data must exist for making these predictions; for example, a model trained 

on data with only a two-year follow-up could not be used to make reliable predictions 

for three years. My interval scaling method is computationally efficient and easily 

implemented and can be used with various future deep learning architectures 

beyond CNNs.  

There is some debate about the usefulness of confidence intervals in decision curve 

analysis. It makes sense to choose whichever model provides the most clinical 

benefit, even if the benefit is not statistically significant. Additionally, the confidence 

intervals make the decision curve slightly harder to read. However, in this case, as 

increasing the number of time points increases the complexity of the model, it may 

be useful to consider the statistical significance of any improved benefits. Decision 

curves without confidence intervals, which may be slightly easier to read, are shown 

in Appendix A. 

The VAR model adds considerably more parameters to the model than the GRU 

model; however, I have shown that the computation time may be significantly less as 

the operations are simpler than those in the GRU. Although the VAR model is faster, 

there is not a significant difference in predictive performance; this indicates that 

complex recurrent units such as LSTM and GRU may not be necessary. Future work 

using such units should consider whether simpler units can be utilised to reduce 

computational cost without sacrificing model performance. 

The GEV activation function may provide an alternative to the sigmoid activation. 

This activation function provides better performcne when data is highly unbalanced 

and performs similar to the sigmoid activation when data is balanced. More recently, 

Alexandridis et al.169 used the Gumbel distribution, which is equivalent to the GEV 
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with 𝜇 = 0, 𝜎 = 1, and 𝜉 = 0, for segmentation and also observed improved 

performance over the sigmoid activation.  

Since the publication of this model, another similar method has been proposed for 

glaucoma,170 highlighting the current research interest in this area. The solution used 

in the glaucoma paper is more complex with multiple LSTM units. In their work, only 

accuracy and an ROC curve are reported, without individual time points or the right-

censored nature of the data being considered.  

4.4.1 Limitations 

There are a few limitations of my work which could be improved in future studies. 

Firstly, I only had access to a single dataset. External validation is needed to assess 

how well the developed methods generalise to other populations. Future studies 

could examine whether additional time points are useful in other applications and 

diseases. 

Although the discrimination and clinical usefulness of the developed models are 

good, they are poorly calibrated with systematic overestimation of the risk of 

progression across all models. These models would need to be recalibrated using 

methods such as isotonic regression to be suitable for clinical use. I have not 

recalibrated the models in this work as my aim has been chiefly methodological 

development, and I do not recommend deployment without further validation and 

sensitivity analysis. Recalibration and deployment are beyond the scope of my aims. 

In the previously published work, I assessed progression or no progression and 

found that multiple time points significantly improve prediction over single time point 

models. However, a single time point may be sufficient when assessing prediction 

performance at individual time points in this thesis. This highlights that multiple time 

points may be more suitable in other applications. 

In these models, I have only used imaging data. However, performance may be 

improved by adding clinical and demographic data. Possible clinical variables that 

could affect AMD progression have been briefly described in Chapter 2.   
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4.5 Conclusions 

In this chapter, I have presented the deep learning methods I have developed, which 

can utilise longitudinal data for prognostic modelling. In particular, interval scaling 

allows for uneven time points between visits and for any future time for prediction to 

be chosen. In the example I gave to demonstrate the methods, a single time point 

was sufficient to predict progression to advanced AMD.  
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Chapter 5: Mixed-Effects Model 

One of the challenges discussed in the introduction is the presence of missing data. 

Until now, I have considered models with an image available at each time point. In 

reality, patients are likely to miss visits or have just begun being monitored, so they 

may have fewer images available. It is possible to develop multiple models for each 

number of available images; however, this is inefficient and not optimal. A model for 

each possible number of images would be needed, and patients without the 

minimum number of required images would need to be excluded from that model. 

Imputation could be used to infer missing data; however, this is computationally 

expensive and may not produce good results for imaging data. Methods for imputing 

some modalities such as CT and MRI exist,171 but when using photographs taken at 

different time points these methods are not suitable. Any imputation method for 

colour fundus imaging would need to deal with differences in lighting, differences in 

optic disc location (including the optic disc being missing), and differences in 

orientation. A method which could account for these missing images is needed. I 

investigated whether incorporating a mixed-effects model into the deep learning 

architecture could solve this problem. Mixed-effects models are a type of statistical 

model that consider both fixed- and random-effects and can account for missing 

data, provided that data is missing at random; this is the method used in my work. 

Rather than immediately implementing mixed-effects into a prognostic model, I first 

tried my mixed-effects model on a diagnostic problem. This enabled me to assess 

the suitability of the mixed-effects layer and how well it accounts for missing data. 

The development of this methodology happened while the COVID-19 pandemic was 

occurring, and a wealth of CT volumetric data became available. Therefore, the 

proposed mixed-effects method is illustrated in a binary diagnostic algorithm for 

COVID-19. While the diagnosis of COVID-19 is not directly related to my PhD 

objectives, the methodology is the same. Although I could have used existing 

methods for CT slice imputation,171 my aim was to develop a method which could be 

used on any image type including colour fundus imaging. 

Many algorithms to diagnose COVID-19 were developed during the pandemic; 

however, these algorithms were often of low quality and unsuitable for real-world 
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use.172 While developing and externally validating my model, I aimed to show how a 

deep learning algorithm could be developed following statistical best practices. 

The work presented in this chapter was made possible by a collaboration between 

the University of Liverpool, Amazon Web Services, and Alces Flight Software. 

Amazon Web Services kindly gave $50,000 of credits to be used on their platform. 

Funding was also received from the EPSRC Impact Acceleration Award (IAA). I 

submitted this work to medRxiv, and it is currently under peer review.173 

5.1 Introduction 

COVID-19 is an infectious respiratory disease which began in 2019 and was later 

declared a pandemic. Symptoms of COVID-19 are hugely varied, with some patients 

being asymptomatic while others develop severe viral pneumonia, which can be 

fatal. Through vaccination programmes, some countries have achieved relative 

control over the spread of the virus; however, future outbreaks and new emerging 

strains are expected to remain for many years or even decades to come. Even as 

vaccines have become more available, the continued threat of vaccine-resistant 

strains means that robust and reliable methods of detecting the disease must be 

developed. 

The standard test used worldwide for confirming suspected COVID-19 is reverse 

transcription-polymerase chain reaction (RT-PCR); however, this detection method is 

not perfect. A review of RT-PCR for COVID-19 diagnosis found that while specificity 

is high at around 95%, sensitivity can be much lower at only 70%.174 Early testing is 

vital to reducing false negatives, as tests taken further away from symptom onset will 

have much lower sensitivity.175 Caution should be taken when using RT-PCR to rule 

out COVID-19. Therefore, computerised tomography (CT) can often be used to 

confirm a negative diagnosis; however, this can increase pressure on radiology 

departments. With many cases worldwide and the need for CT diagnosis, automated 

algorithms may prove helpful in screening patients for COVID-19. 

Many models have been developed to classify COVID-19; however, these models 

are often of poor quality with a high risk of bias.172 As a result, few developed models 

are suitable for clinical deployment. Roberts et al. identified three main pitfalls that 

lead to unsuitable models.176 Firstly, models often lack adequate documentation; this 
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prevents reproducibility. Secondly, best practice guidelines for developing and 

reporting prediction models are not followed. Finally, many studies do not include 

external validation to display the method’s generalisability. External validation is vital 

to assess if the model is applicable outside the study sample. 

In Chapter 3, I discussed CT imaging, the dataset used in this chapter, and the 3D-

like nature of CT imaging. Deep learning can aid in automatically classifying CT 

images with high accuracy. When analysing CT scans using deep learning, there are 

two main approaches: 

(1) Analysing the slices separately and then concatenating the features 

(2) Merging the slices and treating the scan as a 3D structure 

The first approach often uses a feature extraction network (such as a CNN) and 

pooling layers to obtain a feature vector for each image. It then uses a pooling layer 

to concatenate the slices into one feature vector for all slices. A fully connected layer 

is then used to classify the feature vector. This approach may not sufficiently model 

the spatial relationship between slices. Studies of the distribution of COVID-19 

through the lungs have observed that some lobes may be more affected than others, 

and it is important to develop a model which accounts for this. 

Bai et al.177 developed a model which used a pretrained CNN called EfficientNetB4 

to extract features from each slice.  It is not mentioned how many slices were used 

for each patient; however, the dataset contained an average of 111.8 slices per 

patient. A series of fully-connected layers with batch normalisation and dropout were 

then used to reduce the size of each feature vector to 32. Average pooling then 

concatenated the features into a single vector. Finally, a fully-connected layer with 

sigmoid activation was used to obtain a probability of COVID-19.  

On internal testing, this method achieved an accuracy of 0.96 (95% CI: 0.90, 0.98) 

with a sensitivity of 0.95 (95% CI: 0.83, 1.0) and specificity of 0.96 (95% CI: 0.89, 

0.99).177 The authors also reported an external validation accuracy of 0.87 (95% CI: 

0.82, 0.90) with a sensitivity of 0.89 (95% CI: 0.81, 0.94) and specificity of 0.86 (95% 

CI: 0.80, 0.90). This impressive performance appears reasonably well-maintained in 

external data; however, there are a few issues with aspects of this study. Firstly, the 

proposed architecture uses a series of fully-connected layers followed by batch 

normalisation and dropout layers concurrently. It has previously been shown 
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empirically and theoretically that combining batch normalisation and dropout 

produces worse performance.41 Secondly, although data were collected from two 

countries, most COVID negative scans came from one country (81.4% from the US) 

while most COVID positive scans came from the other (97.7% from China). 

Additionally, all COVID negative scans were collected between 2017 and 2019, 

meaning that some or all negative scans were collected before the pandemic. These 

temporal and geographical differences between the COVID positive and COVID 

negative scans will likely add bias to the data. 

COVNet also followed the slice-based approach using ResNet50 pretrained on 

ImageNet to extract features from each slice.178 A max-pooling layer was then used 

to concatenate the features into a single feature vector. Finally, they used a fully-

connected layer with sigmoid activation to estimate the probability of the scan 

showing COVID-19. The model was used to classify scans as COVID-19, 

community-acquired pneumonia, or non-pneumonia. They used 3,918 CT scans 

from 2,969 patients for training and 434 scans from 353 patients for testing. For 

predicting COVID-19, the authors reported an AUROC of 0.95 (95% CI: 0.93, 0.97), 

with a specificity of 0.90 (95% CI: 0.83, 0.94) and sensitivity of 0.96 (95% CI: 0.93, 

0.98). Although images were collected from six separate centres, the images were 

pooled and then split into training, validation, and testing. As noted by the authors, 

the training and testing data came from the same hospitals. It may have been better 

to only use one centre for external validation to assess how well the model 

generalises. 

The second method does enable the model to assess the spatial relationship 

between slices by concatenating the slices into a 3D volume. However, the slices do 

not form an actual 3D structure, especially when few slices are used. An example of 

a model developed using this approach is CoviNet,179 which uses a 16-layer 3D 

CNN, followed by pooling and a fully-connected layer to obtain a probability. This 

approach was applied to a dataset obtained from the US consisting of 397 scans 

from 171 COVID-19 negative patients and 349 scans of 213 patients without COVID-

19. The paper did not specify how the diagnosis was reached or if the COVID-19 

patients had any other lung diseases visible on the scans. On this data, the model 

attained an accuracy of 0.75, sensitivity of 0.917, and specificity of 0.583. The model 

was also applied to the MosMed dataset and achieved an accuracy of 0.941, with a 
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sensitivity of 0.922 and specificity of 0.971. Confidence intervals were not reported. 

The second dataset was not used for external validation, as the model was retrained 

on data from the new dataset.  

These methods require the same number of slices, but the number of slices can 

differ in reality. If the scan has more slices than used in the model, then slices can be 

removed to reach the required size. However, some scans may have fewer than the 

required number of slices. Therefore, a new method was needed to account for the 

spatial relationship between slices without assuming a 3D structure, which could 

account for missing images if smaller scan sizes are used.  

The main aims of the work presented in this chapter were: 

(1) To develop a deep learning mixed-effects method capable of handling missing 

data, which accounts for the relationship between slices without assuming a 

3D structure 

(2) To demonstrate the method on a dataset of CT images 

(3) To externally geographically validate the model 

(4) To follow best practice guidelines for the development and validation of 

clinical prediction models to overcome some of the shortcomings of previously 

developed models 

5.2 Methods 

The method I developed begins by taking a CT volume with 20 slices, although any 

number of slices could be chosen, provided the number is kept constant within the 

dataset. Features are then extracted from each slice to obtain a feature vector. Like 

the models in Chapter 4, I used a CNN as a feature extractor. These feature vectors 

are then passed to a novel mixed-effects layer which models the spatial relationship 

between slices while also dealing with missing slices. The mixed-effects layer results 

in a single combined feature vector, which can be classified using a fully-connected 

layer. An overview of the method is shown in Figure 5.1. 
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Figure 5.1: The overall framework of the model. 

5.2.1 Feature extractor 

Several methods could be used to extract relevant features from the images. Here I 

chose to use the same pretrained CNN as in 0 4, Inception-v3. As previously 

described, Inception-v3 is relatively computationally efficient and highly generalisable 

to many applications. The parameters were pretrained on ImageNet to reduce the 

time taken to convergence.  

One CNN was used for each slice, with the parameters shared across each CNN to 

reduce the computations in training the parameters. I then used average pooling to 

reduce the representations to a single feature vector for each slice. This resulted in a 

feature matrix of shape 20 × 2048. To prevent overfitting, I then applied dropout with 

a probability of 60%. 

5.2.2 Mixed-effects 

Previous methods of extracting features from the 2D slices would usually use a 

pooling layer to concatenate the features into a single vector. My approach aimed to 

consider the spatial relationship between slices using a mixed-effects model 

consisting of both fixed and random effects. 

Mixed-effects models are commonly used in traditional statistics to model spatial 

relationships.180 181 For example, the fixed-effects part can model the relationship 
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within the slices, while the random-effects part can model the spatial relationship 

between slices. This allows the spatial correlations to be modelled. Mixed-effects 

models can also handle missing data, provided the data are missing at random. 

Mixed-effects models are of the form 

 𝑌𝑖 = 𝑋𝑖𝛼 + 𝑍𝑖𝛽 + 𝑒𝑖. (5.1) 

In the above equation, 𝑌𝑖 is a vector of outcomes for the 𝑖𝑡ℎ scan. The fixed effects 

are modelled by 𝑋𝑖𝛼 where 𝑋𝑖 is the design matrix of the 𝑖𝑡ℎ scan obtained from the 

feature extractor, and 𝛼 is a vector of fixed effects parameters to be learned. The 

random effects are modelled by 𝑍𝑖𝛽 where 𝑍𝑖 is the random effects design matrix 

and 𝛽 is a vector of random effects parameters to be learned. The vector 𝑒𝑖 gives the 

unknown random errors of the 𝑖𝑡ℎ scan. 

The fixed-effects design matrix can be constructed using the feature vectors 

extracted using the CNN. I then added a vector of ones for the intercept term. The 

fixed-effects design matrix is then given by 

 𝑋 = [𝟏, 𝑭𝟏, 𝑭𝟐, 𝑭𝟑], (5.2) 

where 𝑭𝟏, 𝑭𝟐, and 𝑭𝟑 are feature vectors extracted by the CNN. 

There are many choices for the random-effects design matrix; in this work, I simply 

used an identity matrix of size 20 × 20, as I used 20 slices; however, this easily 

generalises to any chosen number of slices. I also added a vector of ones for the 

intercept. The random-effects matrix is 

 𝑍 = [
1
1
1
    
1 0 0
0 1 0
0 0 1

], (5.3) 

The parameter vectors, 𝛼 and 𝛽, need to be estimated as parameters in the deep 

learning network. Therefore, I randomly initialised the mixed-effects layer parameters 

using the Gaussian distribution with mean 0 and standard deviation 0.05. 

There are two assumptions that are made by the mixed-effects model. Firstly, it is 

assumed that the random effects are normally distributed with mean 0 and some 

variance 𝐺, such that 
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 𝛽 ∼ 𝑁(0, 𝐺). (5.4) 

 

The second assumption is independence between the random effects and the error 

term. 

One previous piece of work by Xiong et al. used a kind of mixed-effects model in 

deep learning for Gaze estimation. However, their work used the same design matrix 

for both the random- and fixed-effects. Additionally, the parameters were estimated 

in a two-step process. First, an expectation-maximisation algorithm was used to 

estimate the random-effects parameters, while the fixed-effects parameters were 

estimated using backpropagation. My model allows a different random-effects matrix 

to be used, and all parameters are estimated within the same deep learning 

framework. 

5.2.3 Classification layer 

The mixed-effects model results in a single vector of length 20, the same as the 

number of slices. This vector can be considered a feature vector with modelled 

spatial relationships. I used a fully-connected layer with sigmoid activation to obtain a 

probability of the scan displaying COVID-19. I also added L1 and L2 regularisation 

with values of 0.1 and 0.01 to the kernel to reduce overfitting. This gives a single 

value between 0 and 1, the estimated probability of COVID-19 being present in the 

scan. 

5.2.4 Loss function 

As with the models I presented in 0 4, I used the mean squared error with the 

balanced classes and rescaled targets, as previously described. I denote this loss 

𝐿𝑀𝑆𝐸. 

As previously mentioned, one of the assumptions made in mixed-effects models is 

that the random effects parameters, 𝛽, are approximately normally distributed with 

mean zero. Initially, I assumed that the final learned parameters would satisfy this 

assumption; however, this could not be guaranteed. I then considered how I could 

enforce the normality of the parameters to ensure this assumption is met. My 

solution was to introduce a second loss function which encourages these parameters 

to satisfy that assumption. I output the random-effects parameters along with the 
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predicted probability; I could then apply a loss function to this output. To enforce a 

mean of zero, I added a component to the loss function, which calculates the 

absolute value of the mean, 𝐸(𝛽). This penalises the algorithm if the mean of the 

parameters is further from zero. The normal distribution has a skewness of zero and 

a kurtosis of three (or excess kurtosis of zero). These values can be calculated by 

 
𝑆𝑘𝑒𝑤(𝛽) =

√𝑛(𝑛 − 1)

𝑛 − 2

𝐸 [(𝛽 − �̅�)
3
]

(𝐸 [(𝛽 − �̅�)
2
])
3/2

 
(5.5) 

and 

 𝐾𝑢𝑟𝑡(𝛽) =
1

𝑛2
∑(

𝐸 [(𝛽 − �̅�)
4
]

(𝐸 [(𝛽 − �̅�)
2
])
2)

𝑛

𝑖=1

, (5.6) 

where 𝑛 is the number of parameters and �̅� is the mean of the parameters. I added 

skewness and kurtosis components to this new loss function to push the learned 

random-effects parameter to follow an approximately normal distribution. The loss 

function for the random effects parameters was then given by 

 𝐿𝑓𝑖𝑥𝑒𝑑 = |𝐸(𝛽)| + |𝑆𝑘𝑒𝑤(𝛽)| + |𝐾𝑢𝑟𝑡(𝛽) − 3|. (5.7) 

The final loss function is then 

 𝐿 = 𝐿𝑀𝑆𝐸 + 𝐿𝑓𝑖𝑥𝑒𝑑. (5.8) 

A factor could be added to weight one part of the loss function more than the other; 

however, I weighted both losses equally in the total loss in this work. 

5.2.5 Missing data 

Some scans may have more or fewer slices. When there are more than the required 

number of slices, the slices can be uniformly sampled throughout the scan to obtain 

the required number of samples; however, when there are fewer than the required 

number of slices, there needs to be a method capable of handling missing images. 

One option is to develop multiple models for different scan sizes. This option would 

require many models to be trained and is not practical. As previously discussed, one 

advantage of mixed-effects models is their ability to deal with missing data. Blank 

images can pad the scan at uniform intervals when faced with missing images. This 
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is one reason why I chose to incorporate mixed-effects into my algorithm. I assessed 

the ability of my method to deal with different amounts of missing slices in scans. 

5.2.6 Comparisons models 

Many models have been developed for COVID-19 diagnosis, but there are too many 

to feasibly compare against them all. I compared my method against the three 

models described in the introduction to this chapter. As noted by Roberts et al.176, 

the reporting and documentation of many models is insufficient, even when code is 

made available. Therefore, I attempted to recreate the models according to their 

descriptions and code, where it was available. All training and hyperparameter 

settings were kept the same across all experiments to make fair comparisons. 

5.2.7 Performance measures 

Many previous studies focus on assessing the discriminative performance of models 

with measures such as AUROC, sensitivity, and specificity. As I have discussed in 0 

2, while discrimination is important, assessing the calibration of clinical models is 

vital. 

I assessed the overall discriminative performance with the AUROC, using the pROC 

package in R. To calculate 95% confidence intervals, I used DeLong’s method, 

which is a nonparametric asymptotically exact method for calculating AUROC 

confidence intervals. The AUROC assesses performance across all probability 

thresholds; the performance can also be assessed at specific thresholds. I assessed 

the sensitivity, specificity, PPV, and NPV at cut-off points of 0.3, 0.4, 0.5, 0.6, and 

0.7. I used the epiR package in R to calculate these, with Jeffrey’s prior used to 

calculate the 95% confidence intervals. I aimed to achieve moderate calibration to 

ensure that the model does not over- or underestimate the probabilities. Moderate 

calibration can be assessed using calibration curves. I used the CalibrationCurves 

package in R, which is based on the RMS package but adds 95% confidence 

intervals to the curves. Finally, I assessed the clinical usefulness of the model using 

decision curves. Decision curves show the net benefit of the proposed method over 

treating all or no patients as having COVID-19. I also used saliency maps to show 

which areas of the image were considered important by the algorithm in making the 

decision. 
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5.2.8 Training and inference 

Training and hyperparameter tuning were performed on an Amazon Web Services 

p3.8xlarge node with four Tesla V100 16GiB GPUs and 244GiB of available 

memory. Inference and analysis were then performed on a Linux machine running 

Ubuntu 18.04, with a Titan X 12 GiB GPU and 32GiB of available memory. All 

models were developed using Tensorflow 2.4, with analysis performed using R 4.0.5. 

I reduced the computational cost of the models by using 16-bit floating-point 

precision, with only the mixed-effects and final fully-connected layer using 32-bit 

floating-point precision. 

For training, I chose the Adam optimiser with an initial learning rate of 1e-4. If the 

validation loss did not improve within three epochs, I reduced the learning by 80%. I 

stopped training if the validation loss did not improve for ten epochs, so time and 

energy were not wasted. 

5.2.9 Data 

Sample size calculations are rare in deep learning. In the last chapter, I used a rule-

of-thumb to estimate the number of samples needed in the testing dataset to assess 

the model calibration; however, it would be useful to know how many samples are 

needed to train the model. A systematic review of sample-size determination in 

machine learning highlighted that methods to calculate sample sizes in deep learning 

often rely on learning curve approaches.182 These methods train multiple models on 

different amounts of data to assess how the model performance increases with 

increasing data. The performance can be plotted against dataset size to identify the 

required amount of data to achieve a required performance.183 184 This relies on 

having similar data available for a similar task. In many situations, suitable data may 

not be available. 

The main barrier to applying traditional sample size calculations in deep learning is 

the number of parameters. For example, using Inception-v3 for a binary classification 

task with a prevalence of 50% and an expected c-statistic of 0.8 would require over 

half a billion samples according to the pmsampsize in R. This number is clearly too 

high and deep learning models are successfully trained using many fewer samples. 

In this work, I used a different approach that enables the sample size calculations 

from traditional statistical modelling. The final fully-connected layer could be treated 
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as the classifier, with the other layers treated as the feature extractor. In this way, 

only the parameters in the final layer are included in the sample size calculation. 

The model I proposed has 21 parameters in the final layer. Based on previous 

studies, I expected a disease prevalence of 80% and a c-statistic of around 0.8. This 

gave an estimated required sample size of 923. For validation, I aimed for 200 

samples from each class. 

In 0 3, I described the CT datasets used to demonstrate my developed method. First, 

I used data from the MosMed dataset for model training and internal validation, split 

into two-thirds for training and one-third for internal validation. The internal validation 

data is used to select the model during training, and the results on this set are likely 

to be biased. Second, I used the data from the Zhang et al. dataset for external 

geographic validation. A summary of the datasets and data splits is shown in Table 

5.1. 

Table 5.1: Summary of the CT datasets used to demonstrate the developed method. 

Dataset Location Use Healthy/COVID19 

MosMed Training Moscow, Russia Training 169/856 

MosMed Validation Moscow, Russia Internal Validation 85/285 

Zhang et al.156 China External Validation 243/553 

 

To improve the generalisability of the model to unseen data, I applied data 

augmentation during training. I randomly adjusted the brightness and contrast to 

between 80% and 120% of the original values, randomly rotated the images by ±5 

degrees, and cropped the image by up to 20%. The values of these augmentations 

were chosen using a uniform distribution. Finally, I flipped the images horizontally 

and vertically, with a probability of 50% each, which was chosen using a random bit. 

All augmentations were performed on the scan level. All images were resized to 

256 × 256 pixels, and pixel values were divided by 255 to normalise the image 

between 0 and 1. 

In this work, I used 20 slices from each scan. If scans had greater than 20 slices, I 

uniformly sampled slices from the scan to obtain 20 slices total. For example, one 
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scan in the external validation dataset had 19 slices, and a blank slice was added to 

make 20 slices. 

5.3 Results 

In this section, I present the results of my developed method on both the internal 

validation dataset and the external geographical validation dataset. I also present 

saliency maps for some of the images to display how the algorithm identifies the 

correct areas of the image displaying COVID-19. I then briefly perform two sensitivity 

analyses to assess the effects of missing and noisy data on the algorithm. 

5.3.1 Internal validation 

First, I present results on the internal validation set. At the end of each training 

epoch, the loss on this dataset was calculated. The model that achieves the best 

loss was chosen as the final model; therefore, the results on this dataset are biased 

and may not represent how the model performs on unseen data. The full results are 

shown in Table 5.2. 

On the internal validation set, the mixed-effects method achieved an AUROC of 

0.936 (95% CI: 0.910, 0.961). This AUROC is a statistically significant increase over 

the method by Bai et al. with an AUROC of 0.731 (95% CI: 0.674, 0.80) and CoviNet 

with an AUROC of 0.801 (95%CI: 0.748, 0.853). However, there was no significant 

difference in AUROC compared to CovNet, which attained an AUROC of 0.935 (95% 

CI: 0.912, 0.959). ROC curves are shown in Figure 5.2. The calibration curves in 

Figure 5.3 show that the mixed-effects model is reasonably well-calibrated, although 

some recalibration may be beneficial. The comparison models all show inadequate 

calibration. In Figure 5.4, I show a decision curve for the mixed-effects model. The 

decision curve shows that the model improved net benefit over the treat-all or treat-

none approaches. 

5.3.2 External validation 

The same model trained on the MosMed data was then used to classify the Zhang et 

al. dataset images. The external dataset is taken from a separate country, making it 

an external geographical dataset. Results on this dataset will be less biased and 

show how well the model generalises to other settings. The full results are shown in 

Table 5.3. 
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On the external validation dataset, my model had an AUROC of 0.930 (95% CI: 

0.914, 0.947). As with the internal validation data, my model achieved a statistically 

significant improvement over the Bai et al. model, with an AUROC of 0.805 (95% CI: 

0.774, 0.836) and CoviNet with an AUROC of 0.651 (95% CI: 0.615, 0.691). 

However, unlike the internal validation data, there was also a statistically significant 

improvement over the CovNet model, with an AUROC of 0.808 (95% CI: 0.775, 

0.841). ROC curves are shown in Figure 5.5. The calibration curves in Figure 5.6 

show similar results to the internal validation results. The mixed-effects model shows 

calibration close to the perfect calibration, with the Bai et al., CoviNet, and CovNet 

models showing poor calibration. Similar to the internal validation results, the 

decision curve in Figure 5.7 shows that the mixed-effects model provided an 

improved net clinical benefit over the treat-all or treat-none approaches. 
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Table 5.2: Performance on the internal validation dataset. 

Model AUROC Threshold Sensitivity Specificity PPV NPV 

Bai et al. 
0.731 

(0.674, 0.80) 

0.3 0.0 (0.0, 0.042) 1.0 (0.987, 1.0) NA 0.77 (0.724, 0.812) 

0.4 0.012 (0, 0.064) 0.996 (0.981, 1.0) 0.50 (0.013, 0.987) 0.772 (0.725, 0.814) 

0.5 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA 

0.6 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA 

0.7 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA 

CoviNet 
0.801 

(0.748, 0.853) 

0.3 0.459 (0.350, 0.570) 0.898 (0.857, 0.931) 0.574 (0.448, 0.693) 0.848 (0.802, 0.886) 

0.4 0.706 (0.597, 0.80) 0.761 (0.708, 0.810) 0.469 (0.380, 0.559) 0.897 (0.851, 0.932) 

0.5 0.824 (0.726, 0.898) 0.596 (0.537, 0.654) 0.378 (0.308, 0.452) 0.919 (0.870 0.954) 

0.6 0.918 (0.838, 0.966) 0.446 (0.387, 0.505) 0.331 (0.271, 0.394) 0.948 (0.895, 0.979) 

0.7 0.965 (0.90, 0.993) 0.246 (0.197, 0.30) 0.276 (0.226, 0.331) 0.959 (0.885, 0.991) 

CovNet 
0.935 

(0.912, 0.959) 

0.3 0.941 (0.868, 0.981) 0.839 (0.791, 0.879) 0.635 (0.544, 0.719) 0.98 (0.953, 0.993) 

0.4 0.965 (0.90, 0.993) 0.825 (0.775, 0.867) 0.621 (0.533, 0.704) 0.987 (0.964, 0.997) 

0.5 1.0 (0.958, 1.0) 0.796 (0.745, 0.842) 0.594 (0.509, 0.676) 1.0 (0.984, 1.0) 

0.6 1.0 (0.958, 1.0) 0.779 (0.726, 0.826) 0.574 (0.490, 0.655) 1.0 (0.984, 1.0) 

0.7 1.0 (0.958, 1.0) 0.761 (0.708, 0.810) 0.556 (0.473, 0.636) 1.0 (0.984, 1.0) 

Mixed-Effects 

(Ours) 

0.936 

(0.910, 0.961) 

0.3 0.588 (0.476 0.694) 0.961 (0.932, 0.981) 0.820 (0.70, 0.906) 0.887 (0.846, 0.920) 

0.4 0.659 (0.548, 0.758) 0.933 (0.898, 0.959) 0.747 (0.633, 0.840) 0.902 (0.862, 0.933) 

0.5 0.753 (0.647, 0.840) 0.909 (0.869, 0.940) 0.711 (0.606, 0.802) 0.925 (0.888, 0.953) 

0.6 0.812 (0.712, 0.888) 0.884 (0.841, 0.919) 0.676 (0.577, 0.766) 0.940 (0.905 0.960) 

0.7 0.906 (0.823 0.958) 0.832 (0.783, 0.873) 0.616 (0.525, 0.702) 0.967 (0.937, 0.986) 
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Table 5.3: Performance on the external validation dataset. 

Model AUROC Threshold Sensitivity Specificity PPV NPV 

Bai et al 
0.805 

(0.774, 0.836) 

0.3 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727) 

0.4 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727) 

0.5 1.0 (0.985, 1.0) 0.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA 

0.6 1.0 (0.985, 1.0) 0.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA 

0.7 1.0 (0.985, 1.0) 0.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA 

CoviNet 
0.651 

(0.610, 0.691) 

0.3 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727) 

0.4 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727) 

0.5 0.008 (0.001, 0.029) 0.991 (0.979, 0.997) 0.286 (0.037, 0.710) 0.695 (0.661, 0.727) 

0.6 0.160 (0.117, 0.213) 0.929 (0.905, 0.949) 0.50 (0.385, 0.615) 0.716 (0.681, 0.749) 

0.7 0.551 (0.487, 0.615) 0.694 (0.654, 0.733) 0.442 (0.385, 0.50) 0.779 (0.740, 0.815) 

CovNet 
0.808 

(0.775, 0.841) 

0.3 0.305 (0.247, 0.367) 0.969 (0.951, 0.982) 0.813 (0.718, 0.887) 0.760 (0.727, 0.791) 

0.4 0.354 (0.294, 0.418) 0.955 (0.934, 0.971) 0.775 (0.686, 0.849) 0.771 (0.737, 0.802) 

0.5 0.387 (0.325, 0.451) 0.940 (0.917, 0.959) 0.740 (0.655, 0.814) 0.777 (0.744, 0.808) 

0.6 0.432 (0.369, 0.497) 0.937 (0.913, 0.956) 0.750 (0.670, 0.819) 0.790 (0.756, 0.820) 

0.7 0.473 (0.409, 0.538) 0.931 (0.907, 0.951) 0.752 (0.675, 0.818) 0.801 (0.768, 0.831) 

Mixed-Effects 

(Ours) 

0.930 

(0.914, 0.947) 

0.3 0.675 (0.612, 0.733) 0.935 (0.911, 0.954) 0.820 (0.760, 0.871) 0.867 (0.838, 0.894) 

0.4 0.741 (0.681, 0.795) 0.904 (0.877, 0.927) 0.773 (0.713, 0.825) 0.888 (0.859, 0.913) 

0.5 0.778 (0.720, 0.828) 0.882 (0.853, 0.908) 0.744 (0.686, 0.797) 0.90 (0.872, 0.924) 

0.6 0.827 (0.774, 0.873) 0.859 (0.827, 0.887) 0.720 (0.664, 0.772) 0.919 (0.892, 0.941) 

0.7 0.885 (0.838, 0.922) 0.828 (0.794, 0.859) 0.694 (0.639, 0.744) 0.942 (0.918, 0.961) 
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Figure 5.2: ROC curves for the internal validation dataset. The confidence bands 

showed that the mixed-effects and Covnet models performed significantly better than 

the other two. 
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Figure 5.3: Calibration curves on the internal validation dataset for (a) the Bai et al. 

model, (b) the CoviNet model, (c) the Covnet model, and (d) the proposed mixed 

effects model. 
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Figure 5.4: Decision curve for the mixed-effects model on the internal validation 

dataset. 

 

Figure 5.5: ROC curves for the external validation dataset. The proposed mixed-

effects model appears to perform significantly better than the other models. 
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Figure 5.6: Calibration curves on the external validation dataset for (a) the Bai et al. 

model, (b) the CoviNet model, (c) the Covnet model, and (d) the proposed mixed 

effects model. 
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Figure 5.7: Decision curve for the mixed-effects model on the external validation 

dataset 

5.3.3 Saliency maps 

Saliency maps of four scans using the mixed-effects model from the external 

validation dataset are shown in Figure 5.8. I used SmoothGrad to create these 

maps,82 with 20 samples and a noise of 0.2. Four consecutive slices demonstrate 

how areas of disease move through the scans. The model correctly identified 

diseased areas of the scans. This suggests that the model learned the correct 

features. 

5.3.4 Missing data 

To assess the model’s capability to account for missing data, I removed slices from 

the external validation scans at regular intervals and calculated the AUROC. The 

model was not retrained to deal with missing data explicitly. I assessed performance 

at levels of missingness from 0 to 50% in 5% increments. The results in Figure 5.9 

show that my mixed-effects method can reasonably handle missing data. At 20% 

missingness, there was a statistically significant decrease in the AUROC; however, 

even at 50% missingness, the AUROC was 0.890 (95% CI: 0.868, 0.912).  
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5.3.5 Random noise 

Deep learning models using imaging data may be vulnerable to adversarial attacks, 

with small amounts of noise in the image causing the model to make wrong 

decisions with falsely high confidence. I performed a sensitivity analysis on my 

model by adding a small amount of random noise to the external validation dataset 

and calculating the AUROC that my model achieves. I added small Gaussian noises 

to the normalised images with mean 0 and standard deviations from 0 to 0.005 in 

increments of 0.001. Example images with noise are shown in Figure 5.10, with the 

AUROC values shown in Figure 5.11. The AUROC drop steadily with increasing 

levels of noise. Algorithms using CT scans may be particularly susceptible to 

adversarial attacks of random noise as small changes in lung appearance may be 

difficult to see. Although label noise may have been a more realistic and more 

interesting noise to investigate, I did not have chance to test that type of noise in my 

work. 
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Figure 5.8: Saliency maps of four COVID-19 positive scans at four consecutive 

slices. 
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Figure 5.9: Graph showing AUROC values attained by the mixed-effects model on 

the external validation dataset at different levels of missingness. 

 

Figure 5.10: Example images from the external validation set with increasing noise 

levels. (a) sd = 0, (b) sd = 0.001, (c) sd=0.002 (c) sd=0.003, (d) sd = 0.004, and (f) 

sd=0.005. 
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Figure 5.11: Graph showing AUROC values attained by the mixed-effects model on 

the external validation dataset at different levels of random noise. 

5.4 Discussion 

The results presented in this chapter demonstrate the ability of my mixed-effects 

method to distinguish between healthy and COVID-19 CT scans with an AUROC of 

0.930 (0.914, 0.947) on the external validation set. The developed model could 

accurately detect COVID-19 on CT scans and shows some improvement over 

previous methods. Even when removing up to 50% of the slices, the model 

performed reasonably well, suggesting that the mixed-effects model could handle 

missing data appropriately. 

This work highlights the importance of checking model calibration. Although the 

published models used for comparison models showed good discriminative 

performance, they all had poor calibration, suggesting they are unsuitable for clinical 

use. The calibration curve for the Bai et al. model shows that all predictions are close 

to 0.5. This poor calibration may be due to the combined effect of batch 

normalisation and dropout, which has been shown to lead to worse performance. 

Two of the three comparator studies reported good performance on external 

validation sets; however, there were significant problems with those sets, leading to 
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bias. The original Bai et al. study used data with mainly positive scans from one 

country and negative scans from another country. The algorithm may pick up minor 

variations in the scans between countries, and the algorithm could be classifying the 

country rather than the disease. In the CoviNet paper, the model was retrained on a 

subset of the external validation data meaning it is impossible to know how the 

model truly generalises to completely external data. In my work, I did not mix 

datasets; training/internal validation data were taken from a consortium of hospitals 

in Russia, while external validation datasets were taken from a consortium of 

hospitals in China. This helped reduce bias by keeping the samples within splits from 

similar hospitals taken at similar times. Additionally, the external validation data were 

only used for the external validation with no retraining. Therefore, the results 

presented in my work may give a less biased idea of how the models may perform in 

a completely new setting and may explain the widely different results reported in 

other studies. 

At first, I used the Zhang et al. data for training and the MosMed dataset for external 

validation. This gave excellent results; however, the saliency maps showed that the 

algorithm was looking at the outside of the image rather than the lungs, suggesting 

some bias within the dataset. This shows the importance of model explainability in 

deep learning. Saliency maps provide an easily interpretable representation of what 

the algorithm looks at within the image and allow the user to check for bias within the 

dataset. Producing some kind of saliency map of class activation map is essential for 

ensuring that the algorithm works as intended.   

5.4.1 Limitations 

There are several ways in which my work could be improved. Firstly, the loss 

function to ensure the random-effects parameters follow an approximately normal 

distribution uses the absolute value. Using the squared value may provide better 

results and could be explored in future work. In this work, I weighted both the loss 

functions equally. Introducing a factor which weights one of the losses may provide 

better results or faster convergence.  

As I have discussed, there is no established method of sample size calculation for 

deep learning models. Previous methods relied on having large amounts of similar 

data for similar tasks to produce learning curves. This is impractical on new tasks 
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when it is unclear how similar the task is to others. It is possible to look at other work 

in similar areas to assess how much data may be needed; however, even if similar 

models have been developed, the model may be too different to compare. The 

method I used here is based on established sample size methods in statistics.185 

These methods take the number of final model parameters into account. The model 

parameters act differently in traditional statistical models and deep learning models. 

It is common for deep learning models to contain millions of parameters without 

suffering from the same issues that traditional statistical models may encounter. As 

mentioned in the methods section, using the usual sample size calculation would 

recommend a minimum of over half a billion samples; however, deep learning 

models are often trained using far fewer samples. Treating the final fully-connected 

layer of the model as the classification layer and using those parameters in the 

calculation allows for more reasonable sample size estimations. Based on using 21 

parameters, an estimated disease prevalence of 80%, and a conservative expected 

C-statistic of 0.8, I estimated a sample size of 923 would be needed for model 

training; however, the sample size calculation method was created for traditional 

statistical models. This sample size appears reasonable in this work, and the mixed-

effects model was trained sufficiently with good results on the external validation 

dataset. More work is needed to assess whether only using the parameters in the 

final classification layer provides valid sample sizes. 

5.4.2 Future work 

I have evaluated the trained model on a dataset from a separate dataset from a 

different country. This external geographical validation shows that the model can be 

applied to datasets outside the sample population. However, it is vital to robustly 

evaluate the model in every setting it is intended to be used in. The images from 

both datasets were collected on overlapping dates. As new variants of COVID-19 

have emerged and are likely to continue, it is important to assess if these changes 

affect the model’s performance. In other applications, advances in imaging 

technology or protocols may also affect the model performance. External temporal 

validation using more recent images is needed to assess if the model needs 

updating with time.  

The results obtained by the algorithm may appear to show improved sensitivity over 

PCR testing; however, it is impossible to make this conclusion without comparing 
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both my algorithm and the PCR testing on the same set of patients. Future work may 

look into this to test whether CT imaging is more appropriate than PCR. One 

advantage of CT imaging and a diagnostic algorithm is that some human error in 

extracting a sample from a patient is reduced. However, CT imaging PCR testing will 

likely be used in different scenarios. 

5.5 Conclusions 

In this chapter, I have presented my mixed-effects model for COVID-19 diagnosis. 

The model showed improved performance over three previously published models 

for COVID-19 diagnosis. I have also shown the importance of robust analysis of 

results, which includes assessing with various measures. 

Although this work does not directly relate to my central aims, the mixed-effects 

method I developed will form part of my survival model in the next section. This 

chapter has acted as an ablation study enabling me to test the mixed-effects model. 

The results presented here demonstrate that the mixed-effects layer works and may 

be able to deal with missing data.  
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Chapter 6: Survival Model 

In this chapter, I incorporate the mixed-effects layer from Chapter 5 into a survival 

model to help account for missing data. I then add a survival model to the network to 

predict the probability of progression at any chosen time point. This model is similar 

to a joint model in traditional statistics and can handle both missing and right-

censored data. 

6.1 Introduction 

The models I presented in Chapter 4 obtain good discriminative performance and 

can accurately predict progression to advanced AMD. However, there are two 

challenges that the previous models fail to address. Firstly, there is likely to be 

missing data due to patients not having enough visits or images from previous visits 

being lost or corrupted. Secondly, as AMD is a degenerative disease, it is likely that 

all patients could progress to advanced AMD given enough time.  

Although I have shown in Chapter 4 that a single time point may be sufficient for 

predicting AMD progression up to three years, this may not always be true. In 

applications where additional time points are useful, it is important to account for 

situations where they are missing. 

In Chapter 5, I proposed a method to deal with missing data and showed that 

removing 50% of the images can result in good model performance. Survival models 

can be used to account for right-censored data, where the patient is not observed to 

progress in the follow-up time. A loss function can be used to account for the right-

censoring. 

In traditional statistics, a joint model combines mixed-effects and survival models to 

create a longitudinal prognostic model. In this chapter, I present my work that 

combines my mixed-effects layer with a survival model similarly; however, I 

incorporate it all within the deep learning framework and a CNN to automatically 

extract features from images. 

The work presented in this chapter aimed to create a model that accounts for 

missing visits and right-censored data. As with the models in Chapter 4, this model 
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also accounts for uneven intervals between visits; however, the mixed-effects model 

accounts for the uneven intervals instead of using my interval scaling technique. 

6.2 Methods 

My proposed method consists of three main stages. Similar to my previous models in 

Chapter 4, I begin by using a CNN to extract features from each image. This results 

in a feature vector for each image. A mixed-effects model concatenates the feature 

vectors into a single vector. The mixed-effects layer accounts for the missing 

observations and the variable times between observations. Clinical data can be 

incorporated into the model at his point by appending the data onto the single vector. 

A survival model then estimates the survival probability. An overview of the whole 

method is shown in Figure 6.1. 

 

Figure 6.1: Overview of the model architecture.  

6.2.1 CNN feature extractor 

Similar to the GRU and VAR models in 0 4, this method uses a CNN to extract 

features for each image. Image features are extracted using a CNN, with a CNN with 

shared weights for each image. In this work, I used Inception V3, which is highly 

generalisable and applicable to many different image types. I used weights 

pretrained on ImageNet to reduce the time taken to convergence. After the final 
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convolution, global average pooling is applied to produce a single feature vector of 

length 2048 for each image. I applied a dropout of 0.6 after pooling to reduce 

overfitting. 

6.2.2 Mixed-effects layer 

The mixed-effects layer works similarly to the one I proposed in Chapter 5. In this 

chapter, I model the temporal relationship instead of the spatial relationship. The 

random-effects design matrix 𝑍 is changed so that it models the relationship between 

time points 

 
𝑍 =

[
 
 
 
 
 
 

1
1
1
    

0
1

𝑡1 − 𝑡2

1

𝑡1 − 𝑡3
1
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0
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𝑡2 − 𝑡3
1

𝑡3 − 𝑡1

1

𝑡3 − 𝑡2
0

]
 
 
 
 
 
 

, 

 

(6.1) 

where 𝑡1, 𝑡2 and 𝑡3 are the times of the three previous observations. I rescaled the 

time points such that 𝑡1 = 0 for the baseline time. The mixed-effects layer results in a 

single vector, with the relationships between time points modelled using the random-

effects part.  

The random-effects design matrix is more complicated than the one I used in 

Chapter 5 for two main reasons. Firstly, the distance between the observations is no 

longer uniform, and the model must now account for this. Secondly, time points may 

occur before others. In this design matrix, some values may be negative to account 

for this.  

6.2.3 Survival layer 

A survival model estimates the probability of an event occurring up to a certain time. 

The event could be death, the need for intervention, or the progression to the next 

stage of disease. These models can give the likely prognosis over time for a patient. 

In this work, I used a specific type of survival model known as a proportional hazards 

model130. In this section, I use Greek letters to indicate parameters that are to be 

estimated. 

1

1 
1

1 

1

1 
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The probability of a patient experiencing the event at exactly time 𝑡 is called the 

hazard function and is given by the instantaneous hazard function 

 ℎ(𝑡) = ℎ0(𝑡)𝑒
𝛽′𝑥, (6.2) 

where ℎ0(𝑡) is a baseline hazard function, 𝑥 is a vector of covariates, and 𝛽 is a 

vector of parameters. The hazard function gives the instantaneous death rate for a 

patient conditional on surviving up to time 𝑡. The cumulative hazard function can be 

calculated using 

 𝐻(𝑡) = ∫ ℎ(𝑢) 𝑑𝑢.
𝑡

0

 (6.3) 

Then the probability of the patient surviving to time 𝑡 is 

 𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 𝑒𝑥𝑝{−𝐻(𝑡)}, (6.4) 

conversely, the probability of having failed by time 𝑡 is 

 𝐹(𝑡) = 𝑃(𝑇 < 𝑡) = 1 − 𝑆(𝑡). (6.5) 

There are many options for the baseline hazard function, ℎ0(𝑡). In this work, I 

consider the Exponential,130 Weibull,186 and Gompertz187 distribution and compare 

their performance. 

The Exponential survival model is the simplest; the baseline hazard function is given 

by 

 ℎ0(𝑡) = 𝜆, (6.6) 

where 𝜆 is a constant; this assumes a constant hazard rate over time.  

The Weibull distribution186 adds an additional parameter, 𝛾, 

 ℎ0(𝑡) = 𝜆𝛾𝑡𝛾−1, (6.7) 

where 𝑡 is time to progression. The addition of time in the baseline hazard function 

allows the baseline hazard to change over time. 

The Gompertz mortality function was developed to model mortality rates187, with a 

baseline hazard function 
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 ℎ0(𝑡) = 𝜆𝑒
−𝛾𝑡. (6.8) 

 

The Weibull model becomes the Exponential model when 𝛾 = 1, and the Gompertz 

model becomes the Exponential model with 𝛾 = 0. Derivations of the survival 

functions from th baseline hazard function are shown in Appendix B. 

As AMD is a disease which increases with age, it may be reasonable to assume that 

a time-dependent distribution, such as the Weibull or Exponential model, will be 

superior. However, the change may not be large enough over a few years to justify 

additional parameters. Comparing the Weibull and Gompertz models with the 

Exponential model allowed me to assess whether the extra parameter is needed. 

One advantage of this approach is that I can easily concatenate the vector obtained 

from the mixed-effects stage with demographic data. To demonstrate how 

demographic data may be easily added to the model, I retrained the best performing 

model with age at baseline, sex, BMI at baseline, and whether the patient had ever 

smoked added as covariates. These covariates were identified from the previous 

work described in Chapter 2. 

6.2.4 Loss function 

Some patients may not be observed progressing due to dropout or the study ending 

before the patient progressed; this is right-censored data. The previous models I 

have developed and presented in this thesis also used right-censored data; however, 

there was no way to account for this. Survival models have methods for dealing with 

right-censored data in the loss function. 

To account for the censoring, I use the negative of the proportional hazards log-

likelihood function as the loss function to account for right-censored data. The log-

likelihood function for censored data is 

 𝑙 = ∑{𝛿𝑖 log(𝑓𝑖) + (1 − 𝛿𝑖)log (𝑆𝑖)}

𝑖

, (6.9) 

where 𝛿 is an indicator function 

 𝛿 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (6.10) 
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and 𝑓 is the probability density function 

 𝑓(𝑡) =
𝑑

𝑑𝑡
𝐹(𝑡) = ℎ(𝑡)𝑆(𝑡). (6.11) 

 

I also added the random-effects loss function from Chapter 5.  

6.6.5 Clinical information 

Clinical information can easily be added into this model by appending the information 

onto the output from the mixed-effects part. In this work, only baseline clinical 

variables were available; however, in future studies variables such as smoking and 

BMI may be recorded at each time point. These variables can be incorporated into 

the model by appending them onto the corresponding feature vectors inside the 

mixed-effects section (𝐹1, 𝐹2, 𝐹3). 

6.2.6 Data 

As with Chapter 5, I used the pmsampsize package to estimate the minimum sample 

size required for model development. My largest model had nine candidate predictor 

parameters; I aimed for a shrinkage factor of 0.9 and an optimism of 0.05 in the 

apparent 𝑅𝑁𝑎𝑔𝑒𝑙𝑘𝑒𝑟𝑘𝑒
2  and predicted a progression rate of 0.1 per year and a mean 

follow-up of three years. I also aimed to predict at one, two, and three years. This 

gives an estimated minimum sample size of 1,575, which I needed to develop the 

model. 

As the model used in this chapter can account for missing data, I was able to use 

more cases with images that may have only had one or two observations. I found 

5,569 eyes from 3,032 patients that fit the criteria; 952 (17.1%) eyes progressed to 

advanced AMD. I used stratified sampling to split data on the patient level into 50% 

training, 25% validation, and 25% testing. It could be argued that progressing 

patients may be more likely to have missing visits as they may progress and drop out 

before the end of the study. Therefore, I only included patients with complete data in 

the testing dataset to reduce the risk of bias introduced by the model learning 

missing data. This also allowed me to assess how missing data affects the testing 
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set by calculating model performance with one or two observations removed. 

However, patient profiles in the validation and testing sets may contain missing data.  

Stratified sampling maintained approximately 17.1% progression across all three 

data splits. Patient demographics in each split are shown in Table 6.1, and examples 

of two patient profiles are shown in Figure 6.2.  

I performed the same pre-processing and online data augmentation described in 

Chapter 4. When a patient only had one or two visits, I used a blank image, the 

same method as in Chapter 5.  

To assess the impact of missing images, I added in a blank image. These images 

can be added with any reasonable time point specified. In my work, if there was one 

missing image. I inserted it between the two present images and set the missing time 

point as the middle of the two non-missing time points. If there were two missing 

images, I placed one missing image between the present image and the prediction 

time point and the second at the same distance before the present image.  

In one model, I aimed to add clinical data to assess the impact on model 

performance. One patient was missing BMI information, so I set the BMI to 27.5, 

which is the mean of the training dataset. The BMI was divided by 60 and the age by 

100 to normalise the values; however, values can exceed these normalisations. The 

sex covariate was 0 if male and 1 if female, and the “ever smoked” covariate was 0 if 

the patient had never smoked and 1 if they had. 
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Table 6.1: Patient demographics across the data splits. Characteristics are shown to 

be reasonably consistent between splits. 

 Training Validation Testing 

Eyes 2785 1392 1392 

Patients 1532 755 754 

Female (%) 1528 (54.9%) 782 (56.2%)  794 (57.0%) 

Mean baseline age 

(range) 

74.4 (58.4, 87.9) 74.4 (56.9, 85.5)  74.7 (56.9, 87.8) 

Mean follow-up 

Years (Range) 

1.3 (0.5, 8.0) 

 

1.3 (0.5, 12.0)  1.24 (0.5, 6.0) 

Progressing (%) 476 (17.1%) 238 (17.1%) 238 (17.1%) 

Mean BMI at 

baseline (Range) 

27.5 (8.9, 58.2) 27.4 (15.5, 54.9)  27.2 (16.1, 47.1) 

Ever smoked (%) 1499 (53.8%) 775 (55.7%) 689 (49.5%) 
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Figure 6.2: Example profiles of (a) a right-censored patient that is not observed 

progressing to advanced AMD and (b) a patient who is observed progressing to 

advanced AMD; this patient also has a missing visit. The first three time points are 

used to predict the probability of progression at the fourth time point. As AMD is a 

degenerative eye condition, it can be assumed that the patient who was not 

observed progressing will progress at some future time point; I treat this as right-

censored data. 

6.3 Results 

In this section, I begin by presenting the results first for the standard Exponential, 

Weibull, and Gompertz models at one, two, and three time points. Each of these 

models uses three observations.  I then assess how removing one and two of the 

observations affects the results. Finally, I looked at how clinical information (age, 

sex, BMI, and whether the patient has ever smoked) can be incorporated into the 

model and whether this improves performance.  

6.3.1 Standard models 

The Exponential model had a validation C-index of 0.818 (0.794, 0.843), the Weibull 

model attained a C-index of 0.790 (0.763, 0.816), and the Gompertz model had 

0.786 (0.762, 0.810). Model performance on the validation set suggests that the 

(b) 
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additional parameter added by the Weibull and Gompertz models are not justified, 

and the Exponential model may be sufficient.  

On the testing data, the Exponential and Weibull models showed similar 

performance with C-indices of 0.796 (0.769, 0.822) and 0.796 (0.769, 0.822), 

respectively. However, the Gompertz model showed significantly worse performance 

with a C-index of 0.584 (0.541, 0.628).  

Full results with dynamic AUROCs for one, two, and three year predictions are 

shown in Table 6.2 and Table 6.3. ROC curves for one, two, and three year 

predictions are shown in Figure 6.3. ROC component curves are shown in Appendix 

C. Log-negataive-log plots which show that the proportional hazards assumption 

holds, are also shown in Appendix C. 

The calibration curves shown in Figure 6.4, Figure 6.5, and Figure 6.6 suggest that 

all models are poorly calibrated, and recalibration is required. The calibration curves 

for the Gompertz model in the testing dataset show particularly poor calibration, 

which is expected from the poor discriminative performance. 

The decision curves in Figure 6.7 show that both the Exponential and Weibull 

models have improved net benefit over the treat-all approach. The Gompertz model 

has some small net benefit, even in the testing set; however, the net benefit is much 

lower than the Exponential and Weibull models. 

As in previous sections, I created saliency maps using SmoothGrad,82 with 20 

samples and a noise of 0,2. The saliency maps shown in Figure 6.8, Figure 6.9, and 

Figure 6.10 suggest that the Exponential model successfully identifies the drusen as 

useful in the prediction. Compared to the saliency maps shown in Chapter 4, these 

maps seem to be much more precise and identify specific areas of the image.  
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Table 6.2: C-index and AUROC at one, two, and three years for the Exponential, 

Weibull, and Gompertz models on the validation dataset. 

Model C-index Years AUROC 

Exponential 0.818 (0.794, 0.843) 

1 0.834 (0.810, 0.856) 

2 0.959 (0.944, 0.974) 

3 0.962 (0.947, 0.979) 

Weibull 0.790 (0.763, 0.816) 

1 0.812 (0.785, 0.838) 

2 0.936 (0.907, 0.960) 

3 0.958 (0.932, 0.979) 

Gompertz 0.786 (0.762, 0.810) 

1 0.808 (0.785, 0.831) 

2 0.937 (0.908, 0.959) 

3 0.937 (0.912, 0.963) 

 

Table 6.3: C-index and AUROC at one, two, and three years for the Exponential, 

Weibull, and Gompertz models on the testing dataset. 

Model C-index Years AUROC 

Exponential 0.813 (0.789, 0.837) 

1 0.893 (0.872, 0.914) 

2 0.947 (0.916, 0.971) 

3 0.951 (0.919, 0.973) 

Weibull 0.796 (0.769, 0.822) 

1 0.880 (0.856, 0.903) 

2 0.922 (0.892, 0.948) 

3 0.935 (0.902, 0.965) 

Gompertz 0.584 (0.541, 0.628) 

1 0.595 (0.546, 0.643) 

2 0.578 (0.517, 0.636) 

3 0.613 (0.540, 0.687) 

 



172 
 

 

(a)                                                                (b) 

 

(c)                                                               (d) 

 

(e)                                                                  (f) 

Figure 6.3: ROC curves for the Exponential (red), Weibull (blue), and Gompertz 

(green) models on the validation dataset for predictions at (a) one year, (b) two 

years, and (c) three years and on the testing dataset for predictions at (d) one year, 

(e) two years, (f) and three years. 
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(a)                                                              (b) 

 

(c)                                                                  (d) 

 

(e)                                                           (f) 

Figure 6.4: Calibration curves for the Exponential model on the validation dataset for 

predictions at (a) one year, (b) two years, and (c) three years and on the testing 

dataset for predictions at (d) one year, (e) two years, (f) and three years. 
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(a)                                                              (b) 

 

(c)                                                              (d) 

 

(e)                                                             (f) 

Figure 6.5: Calibration curves for the Weibull model on the validation dataset for 

predictions at (a) one year, (b) two years, and (c) three years and on the testing 

dataset for predictions at (d) one year, (e) two years, (f) and three years. 
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(a)                                                              (b) 

 

(c)                                                              (d) 

 

(e)                                                             (f) 

Figure 6.6: Calibration curves for the Gompertz model on the validation dataset for 

predictions at (a) one year, (b) two years, and (c) three years and on the testing 

dataset for predictions at (d) one year, (e) two years, (f) and three years. 
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(a)                                                              (b) 

 

(c)                                                               (d) 

 

(e)                                                             (f) 

Figure 6.7: Decision curves for the Exponential, Weibull, and Gompertz models on 

the validation dataset at (a) one year, (b) two years, and (c) three years and on the 

testing dataset at (d) one year, (e) two years, and (f) three years. 
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(a) 

 

(b) 

Figure 6.8: Saliency maps for a progressing patient showing (a) the original image 

and (b) saliency maps for the Exponential model. 

 

 

 

 



178 
 

 

(a) 

 

(b) 

Figure 6.9: Saliency maps for a progressing patient showing (a) the original image 

and (b) saliency maps for the Exponential model. 
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(a) 

 

(b) 

Figure 6.10: Saliency maps for a progressing patient showing (a) the original image 

and (b) saliency maps for the Exponential model. 

6.3.2 Missing data 

As discussed in Chapter 5, mixed-effects models are capable of dealing with missing 

data. This section displays results for models with one and two observations missing 

from the model. As there is no reason I could identify, in this application, to choose 

the Weibull or Gompertz model over the Exponential model, I used the Exponential 

model to assess the effects of missing data. 

The C-indices for no missing data, one missing observation, and two missing 

observations are 0.813 (0.789, 0.837), 0.796 (0.772, 0.821), and 0.832 (0.805, 

0.859). These results suggest that the performance is not significantly different even 

when two of the three observations are missing, and the mixed-effects model 

successfully accounts for missing data. However, the AUROC values for individual 

time points, displayed in Table 6.4, are significantly lower when two time points are 
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missing. This suggests that a performance measure which mixes clinically useful and 

clinically useless time points and decision thresholds such as the the C-index may 

not necessarily indicate the best model. Practically, we are more concerned about 

performance at the times we are making predictions at and not all time points. ROC 

curves are shown in Figure 6.11, and ROC component curves are displayed in 

Appendix C. 

Figure 6.12 shows that the calibration is similar for no missing time points and one 

missing time point; however, the calibration is much worse when two time points are 

missing. As with the model without missing data, model recalibration is needed.  

The decision curves shown in Figure 6.13 suggest that even with much worse 

performance in terms of AUROC, there is still some net benefit over the treat-all 

approach, even when using two missing images. Decision curves without confidence 

intervals and clinical impact curves are displayed in Appendix C. 

Table 6.4: C-index and AUROC at one, two, and three years for the Exponential 

model with complete data, one missing observation, and two missing observations 

on the testing dataset. 

Missing observations C-index Years AUROC 

0 0.813 (0.789, 0.837) 

1 0.893 (0.872, 0.914) 

2 0.947 (0.916, 0.971) 

3 0.951 (0.919, 0.973) 

1 0.796 (0.772, 0.821) 

1 0.910 (0.888, 0.930) 

2 0.935 (0.899, 0.957) 

3 0.947 (0.896 ,0.976) 

2 0.832 (0.805, 0.859) 

1 0.706 (0.664, 0.745) 

2 0.744 (0.698, 0.788) 

3 0.722 (0.642, 0.802) 
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(a)                                                            (b) 

 

(c) 

Figure 6.11: ROC curves for the Exponential model with zero (red), one (green), and 

two (blue) missing time points models on the testing dataset for predictions at (a) 

one year, (b) two years, and (c) three years. 
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(a)                                                              (b) 

 

(c)                                                               (d) 

 

(e)                                                      (f) 

Figure 6.12: Calibration curves for the Exponential model with one missing 

observation for predictions at (a) one year, (b) two years, and (c) three years and 
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with two missing observations for predictions at (d) one year, (e) two years, (f) and 

three years. 

 

(a)                                                            (b) 

 

(c) 

Figure 6.13: Decision curves for the Exponential model with zero, one, and two 

missing observations for predictions at (a) one year, (b) two years, and (c) three 

years. 

6.3.3 Adding clinical information 

Adding age, sex, BMI, and whether the patient had ever smoked to the Exponential 

model gave C-indices of 0.857 (0.837, 0.877) and 0.838 (0.813, 0.863) on the 

validation and testing datasets, respectively. Full results, including the AUROC at 

one, two, and three years, are shown in Tables 6.5 and 6.6, with the Exponential 

model results for comparison. Adding clinical information did not significantly improve 

performance compared to the Exponential model alone. ROC curves are displayed 

in Figure 6.14, with ROC component curves shown in Appendix C. These curves 

display that the models with and without clinical covariates perform similarly. 
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Figure 6.15 shows calibration curves which suggest that the model requires 

recalibration, similar to the previous models I have shown. The decision curves in 

Figure 6.16 suggest that adding covariates may improve net benefit, but not 

significantly. However, if net benefit is the primary concern irrespective of cost, the 

marginal increase may be worthwhile, as shown in the decision curves without 

confidence intervals in Appendix C. Clinical impact curves are also shown in 

Appendix C. 

Table 6.5: C-index and AUROC at one, two, and three years for the Exponential 

model with and without covariates on the validation dataset. 

Model C-index Years AUROC 

Exponential 0.818 (0.794, 0.843) 

1 0.834 (0.810, 0.856) 

2 0.959 (0.944, 0.974) 

3 0.962 (0.947, 0.979) 

Exponential  

with covariates 
0.857 (0.837, 0.877) 

1 0.867 (0.846, 0.886) 

2 0.960 (0.944, 0.976) 

3 0.972 (0.957, 0.985) 

 

Table 6.6: C-index and AUROC at one, two, and three years for the Exponential 

model with and without covariates on the testing dataset. 

Model C-index Years AUROC 

Exponential 0.813 (0.789, 0.837) 

1 0.893 (0.872, 0.914) 

2 0.947 (0.916, 0.971) 

3 0.951 (0.919, 0.973) 

Exponential  

with covariates 
0.838 (0.813, 0.863) 

1 0.865 (0.839, 0.89) 

2 0.905 (0.88, 0.927) 

3 0.94 (0.916, 0.96) 
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(a)                                                     (b) 

 

(c)                                                       (d) 

 

(e)                                                      (f) 

Figure 6.14: ROC curves for the Exponential model with (blue) and without (red) 

covariates on the validation dataset for predictions at (a) one year, (b) two years, and 

(c) three years and on the testing dataset at (d) one year, (e) two years, and (f) three 

years. 
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(a)                                                             (b) 

 

(c)                                                           (d) 

 

(e)                                                    (f) 

Figure 6.15: Calibration curves for the Exponential model with covariates on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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(a)                                                           (b) 

 

(c)                                                          (d) 

 

(e)                                                            (f) 

Figure 6.16: Decision curves for the Exponential model with covariates on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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6.4 Discussion 

In this section, I have extended the work I presented in Chapter 4 to deal with 

missing data. The method I proposed combines my mixed-effects model and a 

survival model. My method is similar to joint models in traditional statistics but uses 

backpropagation instead of a joint likelihood function. To the best of my knowledge, 

this was the first joint model in deep learning. My model's biggest novelty is the 

ability to take longitudinal images and covariates and produce reasonable 

predictions of the future outcome. 

This was the final model I developed; unfortunately, I did not have enough time to 

solve all the limitations I wanted. The biggest limitation of this work is the surprising 

result that introducing a time-dependent hazard function did not result in improved 

performance. The proportional hazards models I used assume proportional hazards, 

although this assumption can often be violated without causing issues. I have been 

unable to check this as no method is available for images. One possible solution to 

this may be to check the proportionality of the feature vectors, but I was unable to 

implement this.  

I have also not recalibrated the models as I did not have enough time. Recalibration 

is not a priority at this stage, as any model should be recalibrated in its intended 

setting anyway. One possible recalibration method is temporal calibration, which 

helps to account for the changes in survival rates over time.188 Advances in 

treatment may improve survival rates and reduce the appropriateness of any model 

developed on older data. Temporal recalibration recalibrates the baseline hazard 

using a period analysis of a sample. 

I examined three hazard functions for the survival model: the Exponential 

distribution, the Weibull distribution, and the Gompertz distribution. The Exponential 

and Weibull models showed similar performance attaining good discrimination; 

however, the Gompertz model showed significantly worse performance on the 

testing data. The Exponential model is the simplest, with the Weibull and Gompertz 

model containing one extra parameter. Parsimonious models are preferred in 

statistics, and the Exponential model should be chosen in this situation. The Weibull 

or Gompertz models may be expected to be better as they contain a time-dependent 

parameter allowing the baseline hazard to increase with time; however, over the 
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three years that I have predicted, this increase may be negligible. Over such a short 

time span, the change in hazard may mean that a time-dependent hazard function is 

unnecessary. A time-dependent distribution may be preferred over longer 

predictions, such as five years.  

When one image was replaced with a blank image to simulate missing data, the 

model still performed reasonably well, and there was not a significant loss in model 

performance. This is similar to the results observed in Chapter 5. However, when 

two of the images were replaced with blank images, the model performed much 

worse based on the AUROCs at one, two, and three years. This suggests that 

having two-thirds missing data is too much, and this particular algorithm can only 

handle removing one-third of the data. This may not be true for applications, and the 

limit at which missingness begins to affect the model performance may be higher or 

lower. The C-index at for two missing images appeared to be very good although the 

AUROCs for individual years were much lower. One explanation for this is that the 

C-index combines clinically useful and clinically useful time points into a single 

measure. It may be that the model with two missing time points performs very well 

for very short or very long range predictions, but not at the times that we may be 

interested in. 

I have shown how clinical and demographic covariates can be easily added to the 

model in the survival part. The addition of age, sex, BMI, and whether the patient has 

ever smoked did not significantly improve predictive performance. This does not 

necessarily mean that the covariates do not affect the outcome; they do not add 

much prognostic value over the images alone in this situation. I could have used 

variable selection rather than including variables previously identified as useful; 

however, variable selection, especially stepwise regression, is a contentious subject. 

It is often better to use expert knowledge, including clinician opinion and literature 

searches, to choose covariates.189 

There are several possible reasons why adding clinical factors did not significantly 

improve performance. Firstly, late fusion may not be the best approach. In this work, 

I have only assessed the impact of concatenating the covariates onto the feature 

vector before the survival layer. This is a simple solution; however, an early or joint 

approach may have been better able to model the relationship between imaging and 
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clinical covariates. Secondly, BMI and smoking may change throughout the follow-

up. BMI and smoking status are modifiable risk factors, which the patient may 

change after being diagnosed with early/intermediate AMD. Stopping smoking or 

reducing BMI may significantly reduce the chances of progression. Including these 

as time covariates in the mixed-effects part of the model could improve performance. 

Unfortunately, while baseline demographic and clinical variables were available for 

all patients, variables such as BMI and smoking status in AREDS were often blank at 

each subsequent visit. It is impossible to know whether the data is missing, zero, the 

same as the last visit, unknown, or not recorded. More modern studies following 

Good Clinical Practice would not allow for blanks in records, and this problem would 

be avoided. Finally, the model may be able to rely on imaging alone to make the 

predictions. BMI and smoking are also often unreliable, especially if they are patient-

reported.  

6.5 Conclusions 

In this chapter, I have combined the mixed-effects model from Chapter 5 with a 

survival model to create a deep learning model capable of dealing with missing data 

and uneven intervals between visits. I found the Exponential model to perform better 

overall. This model was able to attain good performance, even when one 

observation was missing. This allows for a single model to be used, even when the 

patient only has images for two visits available. I have shown how other clinical 

variables may be added to the model; however, this did not significantly improve 

performance over using the images alone. Other applications may benefit from the 

inclusion of other variables.  
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Chapter 7: Discussion 

In this chapter, I briefly summarise the thesis and highlight the key conclusions and 

contributions that can be made from the work I have performed during my PhD. I 

also outline ways my work could be improved and extended in the short term. I then 

discuss the limitations of my work and several future directions that could extend my 

work in the long term. 

7.1 Summary 

The main aim of my work was to create a deep learning prognostic model to predict 

disease progression using longitudinal imaging data with uneven intervals between 

visits and missing data. Previous models for imaging have required specific intervals 

between visits, for example, 30-day intervals.147 This has greatly limited the 

applicability of previously published models as patients are highly unlikely to visit 

clinic at precisely the same interval each time. Any model would be made invalid if 

the patient missed a visit or had their appointment moved due to the algorithm's 

predictions.  

The first model I developed introduced a novel interval scaling mechanism which 

helps to account for the different intervals between visits. I developed two models 

utilising my novel interval scaling mechanism, allowing for uneven intervals between 

time points. My scaling mechanism also allows for any prediction time point to be 

chosen. My GEV activation also helps to account for the class imbalance. The GEV 

activation is easy to implement, simply replacing the sigmoid activation. I have also 

developed the mGEV activation for the multiclass case. I expect that the activations 

have further applications outside of classification, such as in segmentation, although 

I have not had time to test this. Models I have developed using this showed good 

discrimination.  

The mixed-effects layer I have developed means that spatial and temporal 

relationships can be modelled without assuming 3D structures. I have also shown 

that missing images can be appropriately handled. The novel loss function I 

introduced ensures that the normality of the random effects errors is enforced, which 

is one of the assumptions of the random effects model. When applied to COVID-19 
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data, my model showed improved generalisability over previously published models 

with good calibration maintained in external validation. 

Finally, I developed models which combine mixed-effects and survival models. 

These models are capable of handling both missing and right-censored data. I found 

that an exponential model is adequate for my particular application, but other models 

may be more appropriate in other situations. 

7.2 Strengths and Limitations 

One major strength of my work is that I have followed best practice reporting 

guidelines throughout to better understand how my models may perform in clinic. 

Following these guidelines is vital to ensure that the models provide accurate, safe, 

and useful predictions. Although my models have been shown to have poor 

calibration, it is known that recalibration is needed to ensure that models do not 

under- or over-estimate the risk of progression. 

Shortly after starting the second year of my PhD, the COVID-19 pandemic began, 

and I spent around half of my PhD studentship working from home. As clinicians 

from all areas were refocused to help with the global effort of care and research for 

COVID-19, data became more difficult to obtain. I could not obtain external validation 

datasets, and applications for honorary contracts were put on hold. Adapting to 

working from home and having less access to guidance was also a challenge. Due 

to these issues, I could not complete as much work as I would have hoped, and 

there are several limitations of my work resulting from this.    

Longitudinal images are common in clinical settings, with patients often having 

images collected each time they visit a clinic. However, longitudinal imaging datasets 

are often very uncommon. These datasets are large and expensive to curate, 

requiring extensive long-term funding and planning. Collecting longitudinal images 

also proves problematic as imaging and storage systems may change. For this 

reason, I was only able to gain access to one longitudinal dataset to demonstrate my 

methods.  

In this dataset, a single image appears sufficient for prediction, with only marginal, 

non-statistically significant improvements apparent by adding additional time points. 

For other clinical applications, the addition of longitudinal data may provide greater 
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benefit. In Section 4.4, I gave possible reasons for this, which include the changes in 

AMD progression rate not changing much or at all over the three years we are 

predicting at. It may seem surprising that the Weibull and Gompertz models did not 

perform better than the exponential survival models in Chapter 6. The reason for this 

may be linked to the reason that multiple time points did not improve performance. 

The added value of the Weibull and Gompertz models is that they incorporate time 

into the baseline hazard meaning that they the baseline hazard can change over 

time. The exponential model assumes a constant baseline hazard over all time 

points. If the baseline hazard does not change significantly over the three years that 

we aim to predict at, then the expoenential model will be sufficient for prediction. 

Both of these surprising results can therefore be explained by the relatively short 

window that we are aiming to predict at.   

The AREDS datasets may not be the most suitable datasets in which to develop and 

test my work. Although they are large-scale, there are many problems, as discussed 

in Chapter 3. The findings need to be treated with caution as the allocation of 

participants to supplement, or control may have an effect. My models did not account 

for the formulations as it was not the aim of my work. Adding a covariate for 

nutritional supplementation may improve performance; however, it may also limit the 

use of the model. A prospective study with data collected to externally validate the 

model in the intended clinical setting is needed. This also highlights why temporal 

validation is important; future patients diagnosed with early AMD may change diet 

and supplement intake based on the findings of AREDS changing their prognosis. 

Other potential limitations of the dataset stem mainly from the missing data. The 

survival model I have developed can deal with missing data if the data is missing at 

random; however, there is a limit to the percentage of missingness in the data. The 

AREDS dataset had missing demographic or clinical data, especially for the 

longitudinal variables, such as smoking status, at each visit. As the missing data was 

left blank, it is unclear whether the data was missing, not recorded, not known, or the 

same as the previous visit/baseline. Current Good Clinical Practice (GCP) guidelines 

require the field to be filled in even if the value is not recorded or not known. 

Following GCP guidelines avoids the ambiguity of missing data. 
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The models I have developed show excellent discriminative performance; however, 

the models are not well-calibrated. Before deploying these models in a clinical 

setting, it is vital to ensure they have good calibration to avoid under- or over-

prediction of risk. Models should follow best-practice reporting guidelines to ensure 

that all aspects of model performance are reported. Calibration curves should be 

used to assess moderate calibration. For survival models, temporal calibration is 

required to account for changes in treatment and lifestyles over time.  

Advanced AMD consists of two types, atrophic and neovascular AMD. Patients who 

progress to advanced AMD may develop either one or both conditions. I have only 

considered advanced AMD in my work, but it may be useful to predict the individual 

types of disease. Additionally, I have only considered progression on single eyes. 

The fellow eye is often important in AMD progression, and progression of one eye 

often means that the other eye is likely to progress. In future, utilising information 

about the fellow eye may provide improved performance. A competing risks model 

may be an interesting method to achieve this. 

7.3 Future directions 

There are several areas in which future research could progress; with rapid 

advancements in both AI and disease treatment, it is impossible to know how the 

future will look. One possible area for future work is to use a different backbone 

network. Networks are increasingly becoming more efficient, which will help the 

accessibility of the models presented in this thesis. The CNN may even be entirely 

replaced by a vision transformer or another type of network. These small changes 

may help to improve model performance or deployability. Here, I do not focus on 

small changes such as network architectures; instead, I discuss how research may 

progress into new areas. 

All the models discussed here give a probability of progression; it may be useful to 

produce the future image. Deep learning techniques such as generative adversarial 

networks (GANs) have been used previously to predict the next frames in a video 

sequence. It may be possible to use similar techniques to predict the next image in 

the sequence of visits. However, this may not be clinically useful as the images may 

not accurately represent future images. GANs applied to medical imaging data have 

sometimes added extra objects to the image that do not exist in reality.  
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Often patients may have more than one condition, which can potentially progress. 

For example, in AMD, a patient may have two eyes at risk of progressing, with either 

eye needing treatment if they do. A model could be developed for each of these 

conditions, or a single model could be used for both risks of progression. Traditional 

statistical models may use a competing risks model in this case. The survival models 

presented here can be easily extended to account for competing risks and may 

provide some extra clinical utility. 

The final goal of developing any clinical prediction model is to have it deployed in a 

clinical setting. In this thesis, I have only concentrated on model development. The 

deployment of deep learning models in a clinical setting is a great challenge in AI. 

One of the biggest barriers to adoption and deployment is the lack of robust 

validation of models. External validation following best practice guidelines with 

models assessed in each intended setting is required to ensure these models are 

safe for clinical deployment. Ideally, a prospective study with around 200 patients 

observed progressing to advanced AMD would be needed to assess calibration. 

Patients would need to be observed at baseline, year one, and year two, followed up 

for three years. Assuming a cost of £400 per visit and a progression rate of 50% in 

those three years, this would cost around £1m alone, with additional costs possibly 

taking the total to £2m for a 6-year study. For this reason, validation studies are 

challenging to find funding for. Using retrospectively collected data can decrease the 

cost but tends to introduce bias.  

The validation of in-home monitoring is an exciting possibility, reducing pressure on 

clinics and patients. Handheld colour fundus cameras are becoming more capable of 

providing high-quality images which can be used to diagnose diseases such as 

diabetic retinopathy.190 Artificial intelligence can be incorporated into handheld 

systems, increasing their utility.  

In my work, I have used colour fundus because that is the most available. However, 

OCT is now the preferred method of assessing AMD. Future predictive models will 

likely need to use OCT, this can create a challenge for prognostic models as it may 

take 10 years to collect data using a modality and this modality may become 

obsolete in that time. A recent protocol for the PINNACLE trial, aims to use both 

retrospective and prospective data to identify biomarkers of progression on AMD to 
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develop future prognostic models.191 The method I have presented in Chapter 6 

could be adapted to OCT by utilising two mixed-effects model: one for the spatial 

dimensions in the OCT scan and one for the temporal dimension between time 

points.  

One recently proposed solution to the problem of undervalidated models is to 

commercialise models with the money being given to the researchers.192 Blockchain 

technology has been proposed to create a marketplace for risk prediction models. 

Each time a model is used, the clinician would pay a fee, and the model developed 

would receive income. This would encourage the developer to validate the model so 

that it could be placed on the platform. The authors suggested that a body such as 

Public Health England could set up such a platform.  

There are several serious issues with this approach. Firstly, a complicated 

blockchain solution may not be necessary for such a marketplace, and a REST API 

may suffice. Secondly, risk prediction models are challenging to commercialise. 

Although the model can be identified as an IP, it is often difficult to extract value from 

that IP. Journals increasingly require open access or access upon request for 

datasets, and the mathematical algorithms are notoriously difficult to patent and 

defend. Many algorithms are already open source, meaning that the developer would 

need to develop completely novel algorithms in the hope that they are patentable. 

Once the model is placed behind a paywall, nothing stops someone from adding an 

extra parameter, a slightly different technique, or different data and calling it a new 

IP. For an algorithm to be commercialisable, it may not be made publishable, 

meaning that the developer would have to hold off publishing their work, as they do 

in industry. It is unclear who would be paid for the algorithm; with so many people 

involved in the development and validation of models, it may be impossible to decide 

who gets what. Also, would the developer or the validator be paid? If the goal is to 

encourage validation, then it would be logical to reward the validator. Many groups 

may see validation as an easy way to make quick money and focus solely on 

validating models. If groups are encouraged to both develop and validate models 

themselves, then it may promote falsifying results to show better performance to 

increase the chances of the model being used. A model is nothing without data, so 

there is a strong argument that the patients should be paid more than any 

researcher.  
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Finally, putting models which would usually be free to use behind a paywall will 

inevitably increase healthcare inequality; countries and settings which cannot afford 

to pay per patient would not have access to these models. Some healthcare workers 

may feel that this violates their oath under the Declaration of Geneva 2017193, which 

states, “I WILL SHARE my medical knowledge for the benefit of the patient and the 

advancement of healthcare.” These problems may have solutions that can enable 

this idea to work. For example, the model may be made freely available, and the 

service made the commercialisable product. However, this would mean the app 

developers would likely get the majority of the revenue, leaving very little for the 

researchers developing the models. A simpler alternative to forcing users to pay for 

prediction models is for funders, publishers, and institutions to begin recognising that 

model validation benefits everyone. 

7.4 Main conclusions and contributions 

The main conclusions of my work are as follows: 

1. I have introduced a novel mechanism that accounts for the uneven intervals 

between time points. 

2. My new GEV activation function provides an alternative to conventional class 

imbalance corrections. Very recent work by Goorbergh et al. has highlighted 

the problems associated with class imbalance corrections, such as 

oversampling.194 My novel solution uses a distribution better suited to long-

tailed data. The GEV is made up of three separate distributions: 

Gumbel,  Fréchet, and Weibull, with the distribution chosen by the parameter 

𝜉. The parameters are learned in the deep learning model. This means that 

the model is fit to the data, rather than the data being fit to the model as is 

done with sampling methods. This has been shown to provide improved 

results over the sigmoid activation when data is highly imbalanced and similar 

results to the sigmoid activation when the data is balanced. The GEV 

activation may also be useful in other applications where the sigmoid is used, 

such as binary segmentation. 

3. Combining both my GEV activation and my interval scaling methods, I have 

developed a method for developing longitudinal prognostic models using 

https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution
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images. These models showed good discriminative performance at one, two, 

and three years. 

4. I developed a VAR model, which shows reduced computation time over a 

GRU layer with similar results. This VAR layer contains more parameters than 

GRU, but is a much simpler calculation and may suggest that complicated 

RNNs are not always necessary.  

5. I have created a mixed-effects layer in deep learning, with a new loss function 

to enforce the normality of the random-effects errors. When applied to a 

dataset of CT scans, I have shown that the mixed-effects layer has improved 

generalisability in an external validation dataset with improved calibration over 

previous methods. My mixed-effects method also allows for missing images or 

incomplete scans, with good performance observed even with up to 50% 

missing data. 

6. Finally, I aimed to combine my mixed-effects layer with a survival layer to 

produce a longitudinal survival model. This resulted in a model similar to a 

joint effects model. I found that the exponential hazard function may be 

suitable in my particular application. 
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Appendix A: Additional Figures from Chapter 4 

A.1 ROC component curves 

 

(a)                                                            (b) 

 

(b)                                                             (d) 

 

(e)                                                    (f) 

Figure A.1: ROC component curves for the single time point model on the validation 

dataset for predictions at (a) one year, (b) two years, and (c) three years and on the 

testing dataset for predictions at (d) one year, (e) two years, (f) and three years. 
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(a)                                                           (b) 

 

(c)                                                       (d) 

 

(e)                                                        (f) 

Figure A.2: ROC component curves for the GRU model with two time points on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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(a)                                                           (b) 

 

(c)                                                   (d) 

 

(e)                                                 (f) 

Figure A.3: ROC component curves for the GRU model with three time points on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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(a)                                                            (b) 

 

(c)                                                         (d) 

 

(e)                                                      (f) 

Figure A.4: ROC component curves for the VAR model with two time points on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, € two years, (f) and three 

years. 
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(a)                                                        (b) 

 

(c)                                                     (d) 

 

(e)                                                 (f) 

Figure A.5: ROC component curves for the VAR model with three time points on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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A.2 Clinical impact curves 

 

(a)                                                             (b) 

 

(c)                                                          (d) 

 

(e)                                                          (f) 

Figure A.6: Clinical impact curves for the single time point model on the validation 

dataset for predictions at (a) one year, (b) two years, and (c) three years and on the 

testing dataset for predictions at (d) one year, (e) two years, (f) and three years. 



217 
 

 

(a)                                                            (b) 

 

(c)                                                        (d) 

 

(e)                                                        (f) 

Figure A.7: Clinical impact curves for the GRU model with two time points on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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(a)                                                              (b) 

 

(c)                                                         (d) 

 

(e)                                                    (f) 

Figure A.8: Clinical impact curves for the GRU model with three time points on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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(a)                                                           (b) 

 

(c)                                                            (d) 

 

(e)                                                            (f) 

Figure A.9: Clinical impact curves for the VAR model with two time points on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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(a)                                                            (b) 

 

(c)                                                            (d) 

 

(e)                                                         (f) 

Figure A.10: Clinical impact curves for the VAR model with three time points on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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A.3 Decision curves without confidence bands 

 

(a)                                                           (b) 

 

(b)                                                           (d) 

 

(e)                                                    (f) 

Figure A.11: Decision curves for the single and GRU models on the testing dataset 

at (a) one year, (b) two years, and (c) three years and on the testing dataset for 

predictions at (d) one year, (e) two years, (f) and three years. 
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Appendix B: Derivations of the Survival Functions in 

Chapter 6 

In this appendix, I briefly show the derivations of the survival functions from the 

baseline hazard functions.  

B.1 Exponential 

ℎ0(𝑡) = 𝜆 

⇒ h(t) = 𝜆𝑒𝛽𝑥 

⇒ 𝐻(𝑡) = 𝜆𝑡𝑒𝛽𝑥 

⇒ 𝑆(𝑡) = 𝑒𝑥𝑝{−𝜆𝑡𝑒𝛽𝑥}. 

B.2 Weibull 

ℎ0(𝑡) = 𝜆𝛾𝑡
𝛾−1 

⇒ h(t) = 𝜆𝛾𝑡𝛾−1𝑒𝛽𝑥 

⇒ 𝐻(𝑡) = 𝜆𝑡𝛾𝑒𝛽𝑥 

⇒ 𝑆(𝑡) = 𝑒𝑥𝑝{−𝜆𝑡𝛾𝑒𝛽𝑥}. 

B.3 Gompertz 

ℎ0(𝑡) = 𝜆𝑒−𝛾𝑡 

⇒ ℎ(𝑡) = 𝜆𝑒−𝛾𝑡𝑒𝛽𝑥 

⇒ 𝐻(𝑡) =
𝜆

𝛾
[𝑒𝛾𝑡 − 1]𝑒−𝛾𝑡𝑒𝛽𝑥 

⇒ 𝑆(𝑡) = 𝑒𝑥𝑝 {
𝜆

𝛾
[𝑒𝛾𝑡 − 1]𝑒−𝛾𝑡𝑒𝛽𝑥}. 
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Appendix C: Additional Figures from Chapter 6 

C.1 ROC component curves 

 

(a)                                                             (b) 

 

(c)                                                            (d) 

 

(e)                                                          (f) 

Figure C.1: ROC component curves for the Exponential model on the validation 

dataset for predictions at (a) one year, (b) two years, and (c) three years and on the 

testing dataset for predictions at (d) one year, (e) two years, (f) and three years. 
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(a)                                                            (b) 

 

(c)                                                          (d) 

 

(e)                                                       (f) 

Figure C.2: ROC component curves for the Weibull model on the validation dataset 

for predictions at (a) one year, (b) two years, and (c) three years and on the testing 

dataset for predictions at (d) one year, (e) two years, (f) and three years. 
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(a)                                                           (b) 

 

(c)                                                           (d) 

 

(e)                                                        (f) 

Figure C.3: ROC component curves for the Gompertz model on the validation 

dataset for predictions at (a) one year, (b) two years, and (c) three years and on the 

testing dataset for predictions at (d) one year, (e) two years, (f) and three years. 
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(a)                                                            (b) 

 

(c) 

Figure C.4: ROC component curves for the Exponential model with one missing time 

point on the testing dataset for predictions at (a) one year, (b) two years, and (c) 

three years. 
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(a)                                                          (b) 

 

(c) 

Figure C.5: ROC component curves for the Exponential model with two missing time 

points on the validation dataset for predictions at (a) one year, (b) two years, and (c) 

three years. 
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(a)                                                            (b) 

 

(c)                                                             (d) 

 

(e)                                                             (f) 

Figure C.6: ROC component curves for the Exponential model with covariates on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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C.2 Clinical impact curves 

 

(a)                                                           (b) 

 

(c)                                                           (d) 

 

(e)                                                        (f) 

Figure C.7: Clinical impact curves for the Exponential model on the validation 

dataset for predictions at (a) one year, (b) two years, and (c) three years and on the 

testing dataset for predictions at (d) one year, (e) two years, (f) and three years. 
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(a)                                                            (b) 

 

(c)                                                          (d) 

 

(e)                                                          (f) 

Figure C.8: Clinical impact curves for the Weibull model on the validation dataset for 

predictions at (a) one year, (b) two years, and (c) three years and on the testing 

dataset for predictions at (d) one year, (e) two years, (f) and three years. 
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(a)                                                          (b) 

 

(c)                                                        (d) 

 

(e)                                                        (f) 

Figure C.9: Clinical impact curves for the Gompertz model on the validation dataset 

for predictions at (a) one year, (b) two years, and (c) three years and on the testing 

dataset for predictions at (d) one year, (e) two years, (f) and three years. 
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(a)                                                           (b) 

 

(c) 

Figure C.10: Clinical impact curves for the Exponential model with one missing time 

point on the testing dataset for predictions at (a) one year, (b) two years, and (c) 

three years. 
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(a)                                                        (b) 

 

(c) 

Figure C.11: Clinical impact curves for the Exponential model with two missing time 

points on the validation dataset for predictions at (a) one year, (b) two years, and (c) 

three years. 
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(a)                                                         (b) 

 

(c)                                                          (d) 

 

(e)                                                          (f) 

Figure C.12: Clinical impact curves for the Exponential model with covariates on the 

validation dataset for predictions at (a) one year, (b) two years, and (c) three years 

and on the testing dataset for predictions at (d) one year, (e) two years, (f) and three 

years. 
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C.3 Decision curves without confidence bands  

 

(a)                                                               (b) 

 

(c)                                                          (d) 

 

(e)                                                        (f) 

Figure C.13: Decision curves without confidence bands for the Exponential, Weibull, 

and Gompertz models on the validation dataset for predictions at (a) one year, (b) 

two years, and (c) three years and on the testing dataset for predictions at (d) one 

year, (e) two years, (f) and three years. 
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(a)                                                            (b) 

 

(c) 

Figure C.14: Decision curves without confidence bands for the Exponential model 

with 0, 1, and 2 missing time points on the testing dataset for predictions at (a) one 

year, (b) two years, and (c) three years. 
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(a)                                                          (b) 

 

(c)                                                          (d) 

 

(e)                                                           (f) 

Figure C.15: Decision curves without confidence bands for the Exponential model 

with and without covariates on the validation dataset for predictions at (a) one year, 

(b) two years, and (c) three years and on the testing dataset for predictions at (d) 

one year, (e) two years, (f) and three years. 
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C.4 Log-negative-log plots for the proportional 

hazards assumption 

 

(a)                                                        (b) 

 

(c) 

Figure C.16: Log-negative-log plots used to check the proportional hazards 

assumption. The parallel lines indicate that the assumption holds. 


