20,836 research outputs found

    Sub-Nanosecond Time of Flight on Commercial Wi-Fi Cards

    Full text link
    Time-of-flight, i.e., the time incurred by a signal to travel from transmitter to receiver, is perhaps the most intuitive way to measure distances using wireless signals. It is used in major positioning systems such as GPS, RADAR, and SONAR. However, attempts at using time-of-flight for indoor localization have failed to deliver acceptable accuracy due to fundamental limitations in measuring time on Wi-Fi and other RF consumer technologies. While the research community has developed alternatives for RF-based indoor localization that do not require time-of-flight, those approaches have their own limitations that hamper their use in practice. In particular, many existing approaches need receivers with large antenna arrays while commercial Wi-Fi nodes have two or three antennas. Other systems require fingerprinting the environment to create signal maps. More fundamentally, none of these methods support indoor positioning between a pair of Wi-Fi devices without~third~party~support. In this paper, we present a set of algorithms that measure the time-of-flight to sub-nanosecond accuracy on commercial Wi-Fi cards. We implement these algorithms and demonstrate a system that achieves accurate device-to-device localization, i.e. enables a pair of Wi-Fi devices to locate each other without any support from the infrastructure, not even the location of the access points.Comment: 14 page

    Sub-femtosecond electron bunches created by direct laser acceleration in a laser wakefield accelerator with ionization injection

    Full text link
    In this work, we will show through three-dimensional particle-in-cell simulations that direct laser acceleration in laser a wakefield accelerator can generate sub-femtosecond electron bunches. Two simulations were done with two laser pulse durations, such that the shortest laser pulse occupies only a fraction of the first bubble, whereas the longer pulse fills the entire first bubble. In the latter case, as the trapped electrons moved forward and interacted with the high intensity region of the laser pulse, micro-bunching occurred naturally, producing 0.5 fs electron bunches. This is not observed in the short pulse simulation.Comment: AAC 201

    On the genericity of spacetime singularities

    Get PDF
    We consider here the genericity aspects of spacetime singularities that occur in cosmology and in gravitational collapse. The singularity theorems (that predict the occurrence of singularities in general relativity) allow the singularities of gravitational collapse to be either visible to external observers or covered by an event horizon of gravity. It is shown that the visible singularities that develop as final states of spherical collapse are generic. Some consequences of this fact are discussed.Comment: 19 pages, To be published in the Raychaudhuri Volume, eds. Naresh Dadhich, Pankaj Joshi and Probir Ro

    Mutually Unbiased Bases and Trinary Operator Sets for N Qutrits

    Get PDF
    A complete orthonormal basis of N-qutrit unitary operators drawn from the Pauli Group consists of the identity and 9^N-1 traceless operators. The traceless ones partition into 3^N+1 maximally commuting subsets (MCS's) of 3^N-1 operators each, whose joint eigenbases are mutually unbiased. We prove that Pauli factor groups of order 3^N are isomorphic to all MCS's, and show how this result applies in specific cases. For two qutrits, the 80 traceless operators partition into 10 MCS's. We prove that 4 of the corresponding basis sets must be separable, while 6 must be totally entangled (and Bell-like). For three qutrits, 728 operators partition into 28 MCS's with less rigid structure allowing for the coexistence of separable, partially-entangled, and totally entangled (GHZ-like) bases. However, a minimum of 16 GHZ-like bases must occur. Every basis state is described by an N-digit trinary number consisting of the eigenvalues of N observables constructed from the corresponding MCS.Comment: LaTeX, 10 pages, 2 references adde

    рднрд╛рд░рдд рдХреА рдЙрдкрд╛рд╕реНрдерд┐рдореАрди рдорд╛рддреНрд╕реНрдпрдХреА

    Get PDF
    рдХреГрдкрдпрд╛ рдкреВрд░рд╛ рд▓реЗрдЦ рдкрдвреЗ

    рддрд▓рдордЬреНрдЬреА рдорд╛рддреНрд╕реНрдпрд┐рдХреА рдФрд░ рдЬреАрд╡рд┐рдХреЛрдкрд╛рд░реНрдЬрди

    Get PDF
    рдХреГрдкрдпрд╛ рдкреВрд░рд╛ рд▓реЗрдЦ рдкрдвреЗ

    North-South Distribution of Solar Flares during Cycle 23

    Full text link
    In this paper, we investigate the spatial distribution of solar flares in the northern and southern hemisphere of the Sun that occurred during the period 1996 to 2003. This period of investigation includes the ascending phase, the maximum and part of descending phase of solar cycle 23. It is revealed that the flare activity during this cycle is low compared to previous solar cycle, indicating the violation of Gnevyshev-Ohl rule. The distribution of flares with respect to heliographic latitudes shows a significant asymmetry between northern and southern hemisphere which is maximum during the minimum phase of the solar cycle. The present study indicates that the activity dominates the northern hemisphere in general during the rising phase of the cycle (1997-2000). The dominance of northern hemisphere is shifted towards the southern hemisphere after the solar maximum in 2000 and remained there in the successive years. Although the annual variations in the asymmetry time series during cycle 23 are quite different from cycle 22, they are comparable to cycle 21.Comment: 6 pages, 2 figures, 1 table; Accepted for the publication in the proceedings of international solar workshop held at ARIES, Nainital, India on "Transient Phenomena on the Sun and Interplanetary Medium" in a special issue of "Journal of Astrophysics and Astronomy (JAA)
    • тАж
    corecore