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Mutually unbiased bases and trinary operator sets forN qutrits

Jay Lawrence
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA

(Received 13 March 2004; published 2 July 2004)

A compete orthonormal basis ofN-qutrit unitary operators drawn from the Pauli group consists of the
identity and 9N−1 traceless operators. The traceless ones partition into 3N+1 maximally commuting subsets
(MCS’s) of 3N−1 operators each, whose joint eigenbases are mutually unbiased. We prove that Pauli factor
groups of order 3N are isomorphic to all MCS’s and show how this result applies in specific cases. For two
qutrits, the 80 traceless operators partition into 10 MCS’s. We prove that 4 of the corresponding basis setsmust
be separable, while 6 must be totally entangled(and Bell-like). For three qutrits, 728 operators partition into 28
MCS’s with less rigid structure, allowing for the coexistence of separable, partially entangled, and totally
entangled(GHZ-like) bases. However aminimumof 16 GHZ-like bases must occur. Every basis state is
described by anN-digit trinary number consisting of the eigenvalues ofN observables constructed from the
corresponding MCS.

DOI: 10.1103/PhysRevA.70.012302 PACS number(s): 03.67.2a, 03.65.Ud, 03.65.Wj

I. INTRODUCTION

Systems of three-state particles(qutrits) have been much
under discussion recently because they expand the potential
for quantum information processing and they have been re-
alized and controlled experimentally. Specific realizations for
use in quantum communication protocols include biphotons
[1,2], time-bin entangled photons[3], and photons with or-
bital angular momentum[4]. Qutrit quantum computation
with trapped ions has been described theoretically[5], while
one-qutrit gates have been demonstrated experimentally with
deuterons[6]. Specific advantages of qutrits over qubits in-
clude more secure key distributions[7–9], the solution of the
Byzantine agreement problem[10], and quantum coin flip-
ping [11].

In this paper we describe the general framework for quan-
tum tomography ofN-qutrit states provided by mutually un-
biased basis sets[12] and the special operators(or measure-
ments) associated with them. AsN increases, these operators
retain their fundamental trinary character(having three dis-
tinct eigenvalues), unlike the more familiar operators of
compound angular momentum, for example. This means that
the quantum numbers specifying theN-qutrit basis states are
N-digit trinary numbers: For separable states, each digit cor-
responds to a statement about a single qutrit. For totally en-
tangled states in which the entanglement is shared among all
qutrits, every statement refers to a joint property of two or
more (perhaps all) qutrits; no statement refers to a single
qutrit. Such descriptions parallel those introduced recently
for N-qubit systems[13,14]. In this case, the descriptions
rely on the existence ofN commuting trinary operators. If
these are Hermitian, they comprise a “complete set of com-
muting observables” in the familiar sense[15] that they de-
fine a basis in the Hilbert space of pure states, whose dimen-
sion is 3N.

But the density matrixr describing mixed states resides in
a vector space of dimension 9N, together with all other op-
erators on the state space. Thisoperatorspace is spanned by
a complete and orthonormal set of operators[orthonormal in
the sense TrsOi

†Ojd,di j]. Appropriate trinary operator “basis

sets” are easily constructed as tensor products of unitary one-
qutrit operators[16,17]. This set of 9N operators partitions
into 3N+1 maximally commuting subsets(MCS’s) of 3N−1
operators each[17], expending all operators in the basis apart
from the identity. Each of these MCS’s contains a smaller
subset ofN operators that provide the trinary labels for the
corresponding basis states. The 3N+1 distinct basis sets thus
defined aremutually unbiased[17]; i.e., the inner product
between any two states belonging todifferent ones has the
common magnitude, 3−N/2. Since measurements within each
basis set provide 3N−1 independent probabilities, the 3N+1
basis sets together provide 9N−1. This number is just suffi-
cient to determine the density matrix(with Trr=1).

The partitioning structure described above is guaranteed
because 3 is a prime number: Reference[12] proved that if
the dimensionsdd of a Hilbert space is equal to a power of a
prime number(like 3N), then a full complement ofd+1 mu-
tually unbiased basis sets(MUB’s) exists. The numberd+1
is necessary and sufficient to determine a mixed stater with
maximum efficiency[12]. Reference[17] proved thatd+1
MUB’s exist if and only if a partitioning, complete, and or-
thonormal operator set exists and showed how to construct
such operator sets from Pauli operators. These operators
identify the measurements associated with each MUB. It is
worth mentioning that while MUB’s are desirable for quan-
tum tomography generally, they have proven instrumental in
certain proposed quantum key distributions[18] and in the
solution of the mean king’s problem for prime power dimen-
sions[19]. The last example is a problem in quantum state
determination in which both the choice of a measurement
(the basis set), and its outcome(the state within the basis),
are to be determined.

It should be noted in this connection that the partitioning
property of an operator set is not guaranteed by completeness
and orthonormality. A good counterexample in the one-qutrit
case is the conventional set of generators of SU(3),
l1, . . . ,l8 [20]. This set is orthonormalsTrlil j =2di jd and
complete(with the inclusion of the identity), but it doesnot
partition into four subsets of two commuting operators each.
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So thel j operators provide a basis for quantum tomography
[21], but not one associated with mutually unbiased basis
sets. In Sec. II we shall construct Hermitian operator basis
sets that have two desirable properties: They partition so as
to define MUB’s, and they generate SU(3) [or SUs3Nd in the
general case].

We are interested here in the discrete group properties of
the unitary basis operators themselves. TheN operators that
define basis states also generate, by multiplication, all re-
maining operators in the MCS, plus the identity, thus form-
ing a group of order 3N. The full operator basis consisting of
all MCS’s plus the identity(one copy), totaling 9N operators,
doesnot form a group, but only because multiplication be-
tween operators from different MCS’s generates one of the
three phase factors, exps2npi /3d. Thus, a group of order 3
39N (which we shall call the Pauli group ofN qutrits) con-
sists of the operator basisin triplicate—i.e., each operator
multiplied by each phase factor[16]. Its factor groups relate
closely to the partitioning structure. Those of order 3N are
most useful because they are isomorphic to all of the MCS
groups.

In the next three sections we discuss the one-, two-, and
three-qutrit cases to illustrate the general principles outlined
above and also to highlight special properties that emerge in
each case. The one-qutrit section describes the Pauli group
and illustrates its connection with the(unique) partitioning of
the eight-operator basis set. The two-qutrit section describes
the mutually unbiased bases sets, separable and totally en-
tangled, and the corresponding operator sets. While many
partitions exist, we prove that theirstructure is unique. The
three-qutrit section describes three types of mutually unbi-
ased basis sets. We derive the allowed partitioning structures
and the coexistence conditions for the three types. The con-
cluding section summarizes the results and interprets the tri-
nary descriptions of separable and entangled states in terms
of complementarity between individual and joint properties
of many-particle systems. Two brief appendixes supply back-
ground material for reference as desired while reading the
text. Appendix A reviews the connection between mutually
unbiased bases and the partitioning of an operator set. Ap-
pendix B proves a theorem that describes the general rela-
tionship between such operator partitionings and Pauli factor
groups.

II. ONE QUTRIT

For comparison, recall briefly the Pauli operators for a
singlequbit, written in outer product notation[22] as

Z = unls− 1dnknu,

X = un + 1lknu,

Y ; XZ= un + 1lks− 1dnknu, s1d

where summation is implied over the valuesn=0, 1 (for spin
up and down alongz), and addition is modulo 2 so that the
second equation, for example, readsX= u1lk0u+ u0lk1u. The
four operatorsI, X, Y, andZ form a complete orthonormal

set of operators on the one-qubit Hilbert space. The eigen-
bases ofX, Y, andZ are mutually unbiased: An eigenstate of
Z has equal probabilities of being found in any eigenstate of
X or Y. The eight operators ±Z, ±X, ±Y, and ±I form the
Pauli group[16] of a qubit. A larger Pauli group is some-
times defined as well[23], one which includes the Hermitian
counterpartiY (Z andX being Hermitian as they stand). This
group consists of 16 elementss±Z, ± iZ , . . .d. The more ex-
clusive former definition conforms to the general one that
applies to qutrits.

While the operators defined above are all square roots of
the identity I s232d, the corresponding operators for the
qutrit case are all cube roots ofI s333d, We may write the
complete orthonormal set asI, V, X, Y, Z, V2, X2, Y2, andZ2,
since each element has a square, which is also its inverse. We
may define in analogy with the above, following Refs.
[16,17,22],

Z = unlvnknu,

X = un + 1lknu,

Y ; XZ= un + 1lvnknu,

V ; XZ2 = un + 1lv2nknu, s2d

where summation is implied over the valuesn=0, 1, 2(cor-
responding to spin projections 0, +1, −1 respectively), addi-
tion is modulo 3, and

v = exps2pi/3d. s3d

Each of the four operators in Eq.(2) defines, as its eigenba-
sis, one of the four required mutually unbiased basis sets
[24], and each operator, together with its square, forms a
MCS.

To facilitate writing the multiplication rules among these
operators, we introduce a concise notation reflecting their
actions upon the eigenstates ofZ (the standard basis): “diag-
onal” sI ,Z,Z2d, “right cyclic”sX,Y,Vd, and “left cyclic”
sX2,Y2,V2d. Then, letting the indexl =0, 1, 2 denote the op-
erator within each grouping,

El = Zl = unlvnlknu,

Rl = XZl = un + 1lvnlknu,

Ll = Rl
† = unlv−nlkn + 1u. s4d

One can also think loosely ofRl as “raising” andLl as “low-
ering” operators with respect to the standard basis, but the
“cyclic” designations are more descriptive[25]: Rl andLl are
norm preserving, whereas the usual angular momentum rais-
ing and lowering operators annihilate the uppermost and
lowermost rungs of the ladder, respectively. The multiplica-
tion rules may be constructed immediately. For conciseness,
nine expressions are condensed into six by writing the last
six in the form of commutators:

ElEm = El+m,

RlRm = vm−lL−l−m,
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LlLm = vm−lR−l−m,

fRl,Emg = s1 − vmdRl+m,

fLl,Emg = svm − 1dLl−m,

fRl,Lmg = svm−l − 1dEl−m. s5d

It is apparent from this multiplication table that every one of
the eight operators,Z, . . . ,V2, commutes only with itself, its
square, and the identity. Consider for exampleRl: It com-
mutes withRm only if m= l, with Lm only if m= l (sinceLm is
then its square), and withEm only if m=0. It is also apparent
that thelack of commutativity resides entirely in the phase
factors.

These phase factors spoil the property of closure under
multiplication and prevent these nine operators, by them-
selves, from forming a group. But, as mentioned, a group of
order 27(the Pauli group of a qutrit) is formed by taking the
nine basis operatorsin triplicate—i.e., each operator multi-
plied by 1,v, andv2.

This Pauli group has a trivial factor group of order 9,
whose elements consist of the triplesI=sI ,vI ,v2Id, Z
=sZ,vZ,v2Zd , . . ., V2=sV2,vV2,v2V2d. The multiplication
ZX=Y means that the product of any element ofZ with any
element ofX is equal to some element ofY. This group is
Abelian because no factors ofvn appear in its multiplication
table.

Factor groups of order 3 are more interesting. One ex-
ample is apparent from Eqs.(5). The factor group elements,
each consisting of nine Pauli group elements, may be de-
noted by

E = vnEl = sI,Z,Z2d,

R = vnRl = sX,Y,Vd,

L = vnLl = sX2,Y2,V2d, s6d

where n=0, 1, 2 andl =0, 1, 2. The multiplication table
consists of

R2 = L, L2 = R, RL = LR = E, s7d

and obvious equalities involvingE. This group is, of course,
isomorphic to the groups1,v ,v2d. Equations(6) provide a
useful summary of the relationship between the 27 Pauli
group elements, the factor group of order 9, and the factor
group of order 3.

There is a useful relationship between the last factor
group and the partitioning structure. Any of the four MCS’s
may be combined with the identity to form a subgroup of the
Pauli group. In Table I, we picksI ,Z,Z2d. We define this, in
triplicate, as the identity elementE=sI ,Z ,Z2d of the factor
group. The columns below(in triplicate) form the elements
R andL.

The first entry in each column generates all remaining
entries by multiplication with elements ofE—i.e., XE=R
and X2E=L. There are four such factorizations correspond-
ing to the four choices ofE. A second example is

E = sI,X,X2d,

R = sV,Y2,Z2d,

L = sV2,Y,Zd. s8d

Table I and its four variations illustrate that(i) these factor
groups are isomorphic to all of the subgroups formed by the
MCS’s and(ii ) every factor group element(apart from the
identity) contains one and only one operator from every re-
maining MCS. We prove these two points in Appendix B for
the general case ofN qutrits and apply them in later sections.

It is instructive to compare the order-3 qutrit factor groups
with their qubit counterparts, which are of order 2. The iden-
tity element in the qubit case could beE=s±I , ±Zd, with the
other element(the “flip” element, say) being F=s±X, ±Yd.
Permutations ofX, Y, andZ produce the other factor groups
of order 2.

Let us turn finally to the observables. Since the eight uni-
tary operatorsU=Z, . . . ,V andU†=Z2, . . . ,V2 form (together
with the identity) a complete orthonormal set, we can imme-
diately construct an alternative Hermitian basis through the
transformation

H = sU − U†d/iÎ3, s9d

H̄ = sU + U†d/Î3. s10d

The four operators of typeH have the trinary spectrum

s0, ±1d, and the four othersH̄ have the spectrums2,−1,
−1d /Î3. The relationship between eachH and its compatible

partnerH̄ is

H̄ = s2I − 3H2d/Î3. s11d

The orthonormality relation among all eight is

TrsHiHjd = 2di j , s12d

where indices run from 1,…8, with (say) odd values corre-

sponding toH and even toH̄. The properties of orthonormal-
ity and tracelessness in fact require that compatibleHermit-
ian partners have different spectra. One can then see that the
standard generatorsli of SU(3) fail to partition, because
seven have the spectrums±1,0d and one hass1,1,−2d /Î3.
The Hi operators defined here divide equally among these

TABLE I. The partitioning of 8 one-qutrit operators into 4 maxi-
mally commuting subsets. If all entries are multiplied by 1,v, and
v2, then the top line, includingI, forms the identity elementE of the
factor group[Eq. (6)], while the first and second columns(below
the line) form theR andL elements, respectively.

I Z Z2

X X2

Y Y2

V V2

E R L
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two spectra, and it will be clear that the equal division gen-
eralizes toN qutrits. The 9N−1 partitioning Hermitian opera-
tors provide an optimally symmetrical set of generators of
SUs3Nd.

In the one-qutrit case, the fourtrinary H operators play a
special role: They define the four mutually unbiased basis

sets completely, they generate their partnersH̄ through Eq.
(11), and they generate all eight unitary operators through

U = exps2piH/3d, U† = exps− 2piH/3d. s13d

To verify that Eqs.(13) are equivalent to Eqs.(9) and (10),
we expand the exponential noting that all odd powers ofH
are equal toH itself and all even powers are equal toH2:

U = I +
iÎ3

2
H −

3

2
H2. s14d

Equation (11) then shows thatU and U† are equal to

sH̄± iHdÎ3/2, which is the inverse of Eqs.(9) and (10).

III. TWO QUTRITS

A complete orthonormal set of operators on the two-qutrit
Hilbert space is provided by the 81 tensor products of the
form sI ,Z, . . . ,V2d1 ^ sI ,Z, . . . ,V2d2. Henceforth, in most ex-
pressions we shall drop both thêsymbol and the subscripts
referring to the individual qutrits, so that expressions likeZX
or Y2V or IZ will be understood as tensor products. These
operators have the following properties in common with
their one-qutrit factors: Each generates a cyclic subgroup of
order 3—namely,(II ,PQ,sPQd2), with sPQd3= II—and each
has the trinary spectrums1,v ,v2d. The product of any two
operators is equal to a single operator multiplied byvn, so
that the Pauli group of two qutrits has order 8133=243.
Each of these properties follows from the fact that operators
on one qutrit commute with operators on the other.

Clearly there is a factor group of order 81, each of whose
elements consists of a basis operator in triplicate. But there
are more interesting factor groups of order 9—for example,

sE ,R ,Ld ^ sE ,R ,Ld—which relate to the partitioning of the
basis operators.

The basis operators partition into ten MCS’s of eight op-
erators each. One such partitioning and the associated
MUB’s were presented in Ref.[19]. We show another(simi-
lar) partitioning in Table II together with a related factor
group. The factor group is defined by choosing its identity
element EE to be the first row in triplicate—i.e.,E
=sI ,Z ,Z2d for both qutrits. All other elements are identified
in the bottom row, and these consist of the nine entries in the
columns directly above, all in triplicate. Each such element is
generated by a multiplication such asER= IX3EE. While
the factor group is determined uniquely once itsEE element
is specified, there are several ways in which the elements can
be arranged within each column so that everyrow is a maxi-
mally commuting subset, and consequently, all eigenbases
are mutually unbiased. However, these special arrangements
are not likely to occur automatically, because only 12 out of
the s9!d7 possible arrangements within this particular factor-
ization result in commuting subsets. The theorem of Ref.
[17] proves that a partition exists, and our Appendix B
proves that it conforms to the structure of a factor group as
illustrated in Table II. This structure is useful in determining
all possible partitions, of which there are 48. Before embark-
ing on this task, however, it will be useful to discuss and
classify the basis sets resulting from Table II.

A. Mutually unbiased basis sets

A “complete set of commuting” operators consists of any
two operators in a given row that are not squares of one
another. We shall refer to such operator pairs asgenerators
because, in addition to providing the two independent quan-
tum numbers needed to specify the nine basis states, they
generate the group consisting of the remaining operators in
their row and the identity.

We may choose the first and third entries in each row as
the generators. Then, because those of the top four rows are
all one-qutrit operators, the corresponding bases must be
separable. The first-row basis states are writtenun,mlzz, the

TABLE II. A partitioning of 80 two-qutrit operators into 10 maximally commuting subsets, each consisting of 8 elements. Factor group
elements are identified at the bottom: The identity element consists of operators in the top row(each “in triplicate”), and remaining elements
correspond to the columns directly above them(in triplicate).

II IZ IZ 2 ZI ZZ ZZ2 Z2I Z2Z Z2Z2

IX IX2 XI XX XX2 X2I X2X X2X2

IY IY2 YI YY YY2 Y2I Y2Y Y2Y2

IV IV2 VI VV VV2 V2I V2V V2V2

ZX Z2X2 VZ XY YV2 V2Z2 Y2V X2Y2

ZY Z2Y2 XZ YV VX2 X2Z2 V2X Y2V2

ZV Z2V2 YZ VX XY2 Y2Z2 X2Y V2X2

Z2X ZX2 YZ2 XV VY2 Y2Z V2Y X2V2

Z2Y ZY2 VZ2 YX XV2 V2Z X2V Y2X2

Z2V ZV2 XZ2 VY YX2 X2Z Y2X V2Y2

EE ER EL RE RR RL LE LR LL
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indices sn,md being two-digit trinary numbers that specify
the eigenvaluessvn,vmd of the one-qutrit factors in the sub-
script,Z1 andZ2. Second-row states are writtenun,mlxx, de-
noting products of eigenstates ofX1 andX2, and similarly in
rows 3 and 4. The full basissetsare denoted by SsZ,Zd,
SsX,Xd, and so forth(“S” for separable).

Generators in all remaining rows(5–10) are characterized
by the failure of commutativity between their individual one-
qutrit factors. As in the case of twoqubits [14], the joint
eigenstates of such operator pairs must be totally entangled.
Focusing on the fifth row, we look for joint eigenstates ofZX
and VZ. Let us first write the most general form of eigen-
states ofZX as expansions in separable statesun,mlzx belong-
ing to SsZ,Xd:

uC0l = sau0,0l + bu1,2l + cu2,1ldzx,

uC1l = sdu1,0l + eu2,2l + f u0,1ldzx,

uC2l = sgu2,0l + hu0,2l + ku1,1ldzx, s15d

where the subscripts ofC denote the eigenvalues ofZX
(namely, 1, v, and v2, respectively) and the coefficients
a, . . . ,k are arbitrary. The coefficients are then fixed by re-
quiring that the general states above also be eigenstates of
VZ. There are three choices of coefficients in each expres-
sion, corresponding to the three eigenvalues ofVZ. The sa-
lient feature is that the coefficients have equal amplitudes,
their relative phases being integral powers ofv. The physical
interpretation of this is that whileZX takes a definite value,
its factorsZ andX are maximally random. That is, the sum of
the two indices(the subscript ofCn) is fixed, while each
index by itself takes all three of its possible values with equal
probabilities. With this in mind, we can write all nine row-5
basis states in the form

un,mlBszx,vzd =
1
Î3

o
k=0

2

Cnmkuk,n − klzx, s16d

where Cnmk
3 =1. The subscript on the left side, BsZX,VZd,

refers to the entangled basisset (“B” for Bell like ). The
individual states within this set are denoted by the two-digit
trinary number sn,md specifying the two eigenvalues
svn,vmd of the operatorssZX,VZd, respectively. The indices
sn,md themselves are just the eigenvalues of thetrinary Her-
mitian counterparts defined by Eq.(9); for example,

HsZXd = sZX− Z2X2d/iÎ3. s17d

So, restating the physical interpretation in terms of observ-
ables, the eigenvaluesnd of HsZXd is the sum, modulo 3, of
the eigenvalues ofHsZ1d and HsX2d (k and n−k, respec-
tively), the sum being definite while the summands are ran-
dom.

The randomness applies not just to the one-qutrit factors
in the two generators as shown above, but toall one-qutrit
operators. This follows most dramatically from the stunning
appearance of all 16 one-qutrit factors in every maximally
commuting subset in rows 5–10. Soany one-qutrit factor
may appear in a generator and the above arguments apply. A

concise general proof will be given in the following subsec-
tion.

Rows 8–10 of Table II define states that differ subtly from
those of rows 5–7. Consider the generatorsZ2X andYZ2 of
row 8. The Hermitian counterpart of either of these, for ex-
ample,

HsZ2Xd = sZ2X − ZX2d/iÎ3, s18d

refers to differences, not sums of individual qutrit indices: If
joint eigenstates ofZ2X and YZ2 are expanded in the same
product basis SsZ,Xd used for Eq.(16), the result takes the
form

un,mlBsz2x,yz2d =
1
Î3

o
k=−1

1

Dnmkuk,n + klzx, s19d

showing that the eigenvaluesnd of HsZ2Xd is the difference
between eigenvalues ofHsX2d andHsZ1d. Of course one may
choose different operators to label the states, and in row 8
there is one choice,XV, which refers to sums, while the other
three independent choices refer to differences. Rows 8–10
share the preference for differences, while rows 5–7 share
the preference for sums. These balanced asymmetries can be
interchanged but not removed by renaming the operators,
and they appear to be inevitable.

In all the above examples, basis states have been written
in “minimal” form—i.e., three-term expansions for entangled
states and single terms(by definition) for separable states.
This requires a special choice of “quantization axes” for both
qutrits, a choice that is unique for S states although not for B
states. It is interesting to note that if one instead expands all
MUB states in the standard basis, SsZ,Zd, then all those out-
side of SsZ,Zd have nine-term expansions, of necessity. A
full complement of MUB’s was written out explicitly in this
manner for solving the mean king’s problem in nine dimen-
sions[19].

B. 4S-6B theorem

We now address the problem of enumerating all partitions
of the operator set and of proving that all have the same
structure, producing exactly four separable and six totally
entangled basis sets. We begin by proving that there must be
exactly four separable bases. Consider any operator having
an identity factor—say,PI. The most general MCS to which
it may belong is generated by itself and any operator that
commutes with it, apart from a power of itself. Such an op-
erator must take the formIQ, leading to the MCS
sII ,PI ,P2Id ^ sII ,IQ ,IQ2d− II , whereQ may be any ofV, X,
Y, or Z, squares being redundant. This subset, or its two
generators, defines the separable basis set SsPQd. Since there
are four operators of typePI to begin with and since each
must belong to a MCS containing a distinctIQ operator, we
conclude(1) that there are 4 MCS’s of this type and(2) there
are 24 distinct choices of these 4 subsets. Correspondingly,
there are 4 separable, mutually unbiased basis sets and 24
distinct choices for this quartet. The distinction is simply one
of renaming the basis states of one qutrit while keeping those
of the other qutrit fixed. We may therefore conclude from the

MUTUALLY UNBIASED BASES AND TRINARY… PHYSICAL REVIEW A 70, 012302(2004)

012302-5



specific example shown in Table II that the remaining six
basis sets are totally entangled. It is instructive, however, to
prove this result in more general terms.

Since the required separable bases exhaust all operators
containing an identity factor, it suffices to show that any
MCS lacking such operators must produce a totally en-
tangled basis set. We make use of Eq.(A7) of Appendix A,
which expresses the projection operatorPa

A of any statea
belonging to the basisA in terms of all the corresponding
operatorsU1

A, . . . ,Ud−1
A and the identityI =Ud

A. The coeffi-
cients«aa

* all have unit amplitude and, in particular,«da=1.
The overall factor ofd−1=1/9 guarantees that TrPa

A=1. The
reduced density matrix of either qutrit is the partial trace of
Pa

A over the states of the other. The partial trace vanishes for
all operators witha=1, . . . ,d−1 because no identity factors
appear, leaving onlya=d:

r1 = Tr2Pa
A =

1

9
Tr2I =

1

3
I1, s20d

where I1 is the identity operator on qutrit 1. Similarly,r2
= I2/3, showing that the pure statePa

A is totally entangled.
This proves that all six remaining MCS’s give rise to totally
entangled basis sets.

It is interesting to note that the absence of identity factors
in a MCS implies two other points encountered earlier:(1)
All one-qutrit operators must appear as factors. To prove
this, assume that they do not. Then at least one such factor
would have to appear twice, producing a pair such asPQ and
PR. But these are distinct and commute only ifR=Q2, in
which case their productsP2Id contains a single identity fac-
tor, producing a contradiction.(2) No two generators of such
a MCS may have compatible one-qutrit factors. This follows
from point (1), noting thatPQ andP2Q2 appear in the same
MCS but cannot be generators.

C. Final count: 48 partitions

Having counted 24 choices for the four separable basis
sets, we ask finally how many choices remain for partition-
ing the complete operator set. It suffices to begin with the
specific choices of rows 1–4 as written in Table II, since all
others correspond to relabeling the operators on the second
qutrit. To count the remaining options for partitioning the
operators in rows 5–10, we count the ways to rearrange op-
erators in the third column, keeping those of the first column
fixed, in such a way that these pairs generate compatible
rows that do not overlap with any other rows.(This simpli-
fication rests on the factor group theorem of Appendix B.)
ConsiderZX from the first column. It commutes withVZ,
XZ, andYZ and no others from the third column. The first
and third choices are viable, while the second must be ruled
out because it generatesYY, which already appears in the
third row. Given either viable choice, there remains only one
choice for partners ofZY andZV that does not reproduce an
operator already existing in some row above. Moving to the
last three rows,Z2X commutes withYZ2, VZ2, andXZ2 and
no others from the third column. Given our choice for the
fifth row, only the first choice is viable:VZ2 is ruled out
because it generatesYV, which already appears in the sixth

row, andXZ2 is ruled out because it generatesVV, which is
found in the fourth row. Therefore, in total, only two choices
exist for the last six rows given the first four rows. The
choice not shown here appears in Table V of Ref.[19]. With
24 options available for the first four rows, there are 48 dis-
tinct partitions of the full operator set. Only the last choice,
involving just the totally entangled basis sets, does not cor-
respond to a simple relabeling of one-qutrit states.

IV. THREE QUTRITS

There are 93=729 tensor product operators such asVZX2,
Y2IX, ZII, etc., that comprise a complete orthonormal set. As
before, each generates a cyclic subgroup of order 3 and has
the trinary spectrum. The product of any two is a single
operator timesvn, so that the Pauli group has order 3393

=2187. The more interesting factor groups are of order 27—
for example,sE ,R ,Ld^3; these relate to the partitioning of
the basis operator set into 33+1=28 maximally commuting
subsets of 33−1=26 operators each. The new aspect that
emerges withN=3 is that different partitioningstructuresare
possible. For example, if the number of separable basis sets
is maximized at 4, then all remaining 24 basis sets are totally
entangled. However, one may choose fewer than 4 separable
bases, requiring that some others have partial entanglement.
Let us begin by illustrating the three types of basis sets and
corresponding MCS’s that can occur. We shall then deter-
mine the partitioning structures that are possible, without at-
tempting to count the actual number of each type.

Product bases may be denoted by SsPQRd, whereP is any
of V, X, Y, or Z, etc. These are eigenbases of the one-qutrit
operatorsPII, IQI, and IIR, which generate the maximally
commuting subsetssI ,P,P2d ^ sI ,Q,Q2d ^ sI ,R,R2d. As with
two qutrits, there are only four(nonredundant) choices forP
and therefore at most four such subsets, with four corre-
sponding product bases. As before, of course, there are many
choices for these quartets.

Totally entangled basis sets in which the entanglement is
shared equally among all three qutrits(analogous to three-
qubit GHZ basis sets[14]) arise from MCS’s similar to the
example shown in Table III.(“Similar” means “same number
of I factors.”) We show half of the operators which, together
with their squares, comprise the full MCS of 26. Each row,
together with its squares, forms a subgroup when combined
with ZZZ, its square, and the identity. The three generators of
the full MCS may be any three operators that do not belong
to the same subgroup. The operators in the last row are no-
table because they(and their squares) are diagonal in the
separablebasis SsZZZd. The first three operators specify dif-

TABLE III. These 13 three-qutrit operators and their squares
form a maximally commuting subset whose eigenbasis consists of
totally entangled three-qutrit GHZ states.

XXX YYY VVV

XYV YVX VXY

XVY YXV VYX

Z2ZI Z2IZ IZ2Z ZZZ

JAY LAWRENCE PHYSICAL REVIEW A 70, 012302(2004)

012302-6



ferences between two one-qutrit indices, and the fourth op-
erator specifies the sum of all three. A simultaneous eigen-
state (with the sum and all differences equal to zero, for
example) is

uCl = sau000l + bu111l + cu222ldzzz, s21d

where the subscript indicates separable states, and the coef-
ficientsa, b, andc are arbitrary. There are nine expressions
of the form of Eq.(21) which are simultaneous eigenstates of
fourth-row operators, each being a superpositionsk=0,1,2d
of separable statesuk,n+k, l +klzzzwith arbitrary coefficients.
The fourth-row operators(or, more precisely, their Hermitian
counterpartsH) have eigenvaluesn, l, sl −nd, andsl +nd, re-
spectively, which reflects the fact that only two of them are
independent. In order to fix the coefficients in the 9 expres-
sions and extract the 27 simultaneous eigenstates of all op-
erators in Table III, we require that these expressions be
eigenstates of a third independent operator—say,XXX. We
may write the 27 basis states in analogy with Eq.(16) as

un,l,mlG =
1
Î3

o
k=0

2

Cnlmkuk,n + k,l + klzzz, s22d

whereuCnlmku=1, the subscript G identifies the entangled ba-
sis setGsZ2ZI ,Z2IZ ,XXXd, andn, l, andm are the eigenval-
ues of (the Hermitian counterparts of) the three operators
listed, respectively. For example, HsXXXd=fXXX
−sXXXd†g / iÎ3→m.

The presence of the operatorXXX in this list might sug-
gest the alternative separable basis set SsXXXd for the expan-
sion of theun, l ,mlG states. However, such expansions would
require sums of nine terms, not three. The basis SsZZZd is
special in reducing the expansion to its “simplest” form. This
situation is analogous to that of three-qubit GHZ states,
where the “simplest” form consists of two-term expansions
in separable states. There too the simplification depends on a
special choice of quantization axes for the individual qubits,
other choices requiring four- or eight-term expansions.

The “three-qutrit GHZ” states, like their three-qubit coun-
terparts, share the property that all one-particle reduced den-
sity matrices are proportional to the identity. The proof of
this fact again follows directly from the operators them-
selves: We expand the projection operatorPa

A of any such
basis state in terms of the MCS operators using Eq.(A7) of
Appendix A. Since no operator in the expansion has more
than a single identity factor(apart from theIII /27 term), the
partial trace ofPa

A over any two qutrits is proportional to the
identity on the other—for example,

r1 = Tr2,3Pa
A =

1

27
Tr2,3I =

1

3
I1. s23d

There are subtle differences among three-qutrit G bases
analogous to those occurring in two-qutrit B bases, in which
the expansion of Eq.(22) takes slightly different forms. For
example, suppose that all operators on the third qutrit are
interchanged with their squares in Table III. Then sums and

differences are interchanged wherever the third qutrit is in-
volved, and the expansion in the same separable basis
SsZZZd takes the form

un,l,mlG8 =
1
Î3

o
k=0

2

Dnlmkuk,n + k,− l − klzzz, s24d

where G8 refers to GsZ2ZI ,Z2IZ2,XXX2d andm is the eigen-
value ofHsXXX2d, etc. Clearly there are four distinct expan-
sions of the type seen in Eqs.(22) and(24), corresponding to
the four ways of distributing(2) signs among thek’s.

The Aharonov stateuAl that is used in the solution of the
Byzantine agreement problem[10] is the (unique) spin sin-
glet state of three qutrits. It is the superposition of all six
permutations of 0, 1, and 2 among the three qutrits, with
coefficientss1/Î6d for even permutations ands−1/Î6d for
odd. Thus, it is the superposition of two states of the form of
Eq. (22),

uAl =
1
Î2

su1,2,1lG − u2,1,1lGd, s25d

where the third entry in the kets is the eigenvalue ofXXX,
which is a cyclic permutation operator, and the first two en-
tries distinguish even and odd permutations.

Let us finally illustrate MCS types that produce basis sets
of mixed entanglement, in which one particle is unentangled
while the other two are maximally entangled in the Bell-like
states of the previous section. One such subset that singles
out the first particle is generated byZII, IZX, and IYZ. The
corresponding basis set can be denoted by
SBfZ1; sZX,YZd2,3g, which indicates products ofZ states for
particle 1 with Bell states for particles 2 and 3. States within
this basis set can be expanded using the coefficients defined
in Eq. (16):

un,l,mlSB =
1
Î3

o
k=0

2

Clmkun,k,l − klzzx, s26d

where the subscript SB is short for SBfZ1; sZX,YZd2,3g. Here
the first index does not vary in the sum; in other basis sets
such as SBfZ2; sZX,YZd1,3g the second would be held con-
stant. A maximum of 12 such basis sets can be mutually
unbiased: Any qutrit can be singled out to be unentangled,
and in each case four basis sets are possible(V, X, Y, or Z).
In a partition where this maximum is realized, the remaining
16 basis sets must all be of the GHZ(G) type.

To understand the range of partitioning structures, we
classify the 728 operators as one-body(two identity factors),
two-body (one identity factor), and three-body(no identity
factors). The total number of each type is given in Table IV
and compared with the numbers that occur within each type
of MCS. This table shows that there can never be more than
4 mutually unbiased separable bases, since this would re-
quire more than the existing 24 one-body operators. Simi-
larly, there can never by more than 12 partially entangled
bases. More generally, the numbers of each type that may
coexist within any partitioning structure must satisfy the re-
lations
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NsGd = 16 + 2NsSd,

NsSBd = 12 − 3NsSd, s27d

where NsSd=0,1, . . . ,4 is thenumber of separable bases.
The number of partially entangled(SB) bases may be 0–12
in steps of 3, and the number of GHZ bases may range from
16 to 24 in steps of 2. Equations(27) require that no other
MCS types exist, and one can easily verify that this is indeed
the case[26]. Similar coexistence conditions exist for the
three-qubit case, where analogous types of mutually unbi-
ased basis sets occur. However, the new and surprising as-
pect of the present results is the existence of aminimum
number of GHZ bases.

V. CONCLUDING SUMMARY

The foregoing three sections illustrate how factorizations
of the Pauli group relate to operator partitions and hence to
mutually unbiased basis sets. The factor groups of order
3N—for example, sE ,R ,Ldd^N—are isomorphic to every
MCS in the partition. Every MCS hasN generators, which
provide the necessary quantum numbers to label the associ-
ated basis states byN-digit trinary numbers. The Hermitian
counterparts of these generators form the “complete sets of
commuting observables.” The 3N+1 distinct sets are mutu-
ally unbiased: Any state for which one set takes definite val-
ues produces perfectly random outcomes for all other sets.
This statement applies equally well to the full MCS’s.

New aspects emerge as one proceeds to larger numbers of
qutrits. In the case of a single qutrit there is a unique parti-
tioning of the eight operators into four MCS’s.

In the case of two qutrits, there are 48 distinct partition-
ings, but they all have the same structure, producing four
separable bases and six totally entangled(Bell-like) bases.
Each of the 10 MCS’s has two generators, so that all quan-
tum numbers are two-digit trinary numbers. Those associated
with the Bell-like basis states refer exclusively to sums or
differences of particular one-qutrit attributes, and in doing so
they impose perfect randomness onall one-qutrit attributes.

The three-qutrit case exhibits distinct partitioning struc-
tures, allowing for the coexistence of three different types of
basis sets according to Eqs.(27): The GHZ-like states are
defined by three-digit trinary numbers, each digit referring to
sums or differences of two or three one-qutrit attributes. At
least one digit must refer to all three qutrits, as is seen from

the generators. All one-qutrit attributes are perfectly random
in the GHZ-like states.

The latter two cases illustrate a sort of complementarity
between individual and joint properties of a system of par-
ticles. This complementarity is expressed through operator
sets rather than individual operators, and in general allN
generators are required: WithN=3, suppose we choose two
generatorsZ2ZI andZ2IZ from Table III. A third choiceXXX
produces a GHZ basis, while the alternative choiceZII pro-
duces a separable basis. In the latter case,XXX is random
while in the former,ZII is random(sinceeveryoperator out-
side the MCS of the generators is random). In this sense the
concept of unbiasedness of operator sets incorporates aspects
of both complementarity and contextuality. The compatibil-
ity of two operators does not rest on their commutativity
alone, but on the choice of other operators to be measured.
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APPENDIX A

In this appendix we review a general theorem proved in
Ref. [17]: A full complement of mutually unbiased basis sets
exists if and only if a partitioning, complete, and orthonor-
mal set of operators exists. We follow the notation of a simi-
lar proof given specifically forN-qubit systems in Ref.[14].

First, suppose that a full complement ofd+1 mutually
unbiased basis sets exists in a Hilbert space of dimensiond.
In terms of projection operatorsPa

A= uA,alkA,au, whereA
=1, . . . ,d+1 denotes the basis anda=1, . . . ,d the state
within it, the orthonormality of each basis is expressed by

TrsPa
APb

Ad = dab sA1d

and the unbiasedness of different basessAÞBd by

TrsPa
APb

Bd = d−1. sA2d

Corresponding to each basis set, we maydefinea maximally
commuting set of unitary operators,Ua

A, wherea=1, . . . ,d,
including the identity,I ;Ud

A, by their spectral representa-
tions

Ua
A = o

a=1

d

«aaPa
A. sA3d

Unitarity of Ua
A requires thatu«aau=1, and Ud

A= I requires
«da=1. We further stipulate that the rows of the “« matrix”
be orthogonal,

o
a=1

d

«aa
* «ba ; s«a,«bd = ddab, sA4d

i.e., that the scaled matrix« /Îd be unitary:

d−1«†« = I . sA5d

In consequence, theUa
A operators form an orthonormal set

(with the exception of the redundant identitiesUd
A), that is,

TABLE IV. The distribution of operators within the three types
of maximally commuting subsets: separable(S), partially entangled
(SB), and totally entangled(G). These profiles determine which
partitioning structures are possible.

Operators One-body Two-body Three-body

Total numbers 24 192 512

One S basis 6 12 8

One SB basis 2 8 16

One G basis 0 6 20
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TrsUa
A†Ub

Bd = o
a,b

«aa
* «bbTrsPa

APb
Bd = ddABdab, sA6d

where Eqs.(A1) and(A4) are used ifA=B and Eq.(A2) and
o«aa=0 (for aÞd) are used otherwise. Equation(A6) shows
that thed2−1 tracelessUa

A operators, together with the iden-
tity, form a complete and orthonormal set. The partitioning
property is guaranteed by Eq.(A3), which implies commu-
tativity within subsetssAd.

The converse of the above theorem may be demonstrated
immediately. Assume that a complete and orthonormal set of
operatorsUa

A exists with the partitioning property. Append
the identity to each maximally commuting subset and apply
the inverse of the transformation defined by Eq.(A3), ex-
ploiting Eq. (A5):

Pa
A = d−1o

a=1

d

«aa
* Ua

A. sA7d

The required properties[Eqs.(A1) and(A2)] are easily veri-
fied. Equation(A7) is useful in Secs. III and IV.

As a final note, the operatorsUa
A need not be unitary. One

can choose the matrix« to have real entries makingUa
A Her-

mitian, for example. The matrix« /Îd must then be orthogo-
nal to ensure orthonormality of the sethUa

Aj.

APPENDIX B

In this appendix we prove the relationship between parti-
tionings of the operator sethUa

Aj and factorizations of the
Pauli group,hs1,v ,v2d3Ua

Aj. Simply stated,any maximally
commuting subset (say, A) in the partition corresponds to the
identity element of a Pauli factor group. The other elements
contain one and only one operator from every other MCS
sBÞAd. The factor group is isomorphic to every MCS (plus
the identity, and in triplicate).

The following proof is given forN qutrits (Hilbert space
dimensiond=3N), although clearly the theorem is more gen-
eral.

Consider the complete orthonormal set of unitary opera-
tors hUa

Aj that partitions into maximally commuting subsets
A=1, . . . ,d+1, where a=1, . . . ,d−1 denotes operators
within each subset. The Pauli group consists of these opera-
tors, plus the identity, allin triplicate (i.e., multiplied by the
three phase factorsvn) and is thus of order 3d2=339N. A
subgroupF consists of any maximally commuting subset
(say,A), plus the identity, in triplicate:

F = s1,v,v2d 3 sU1
A, . . . ,Ud

Ad, sB1d

whereUd
A; I. The inclusion of the phase factors makesF an

invariant subgroup which, consisting of 3d elements, defines
a factor group of orderd. All of the factor group elements are
generated by the multiplication,

Fb = Ub
BF, sB2d

with fixed BÞA and b=1, . . . ,d, the last entry reproducing
the identity elementFd=F. The product rule of theseFb is
identical to that of theUb

B themselves, moduloWn,

FbFc = Ub
BFUc

BF = Ub
BUc

BF, sB3d

showing that indeed they form a factor group as advertised.
To prove the theorem stated above, notice that every

Fb sbÞdd contains a distinct operator inB, each in triplicate.
But there ared choices ofB sBÞAd, every one of which
must generate the same factor group elements. Therefore ev-
ery Fb sbÞdd must contain a distinct operator from every
maximally commuting subset other thanA, each in triplicate.
This accounts for the full constituencys3dd of eachFb, so
the theorem is proved.
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