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PHYSICAL REVIEW A 70, 012302(2004)

Mutually unbiased bases and trinary operator sets forN qutrits

Jay Lawrence
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA
(Received 13 March 2004; published 2 July 2p04

A compete orthonormal basis ®-qutrit unitary operators drawn from the Pauli group consists of the
identity and -1 traceless operators. The traceless ones partition Mtd 3naximally commuting subsets
(MCS’s) of 3N-1 operators each, whose joint eigenbases are mutually unbiased. We prove that Pauli factor
groups of order B are isomorphic to all MCS’s and show how this result applies in specific cases. For two
qutrits, the 80 traceless operators partition into 10 MCS'’s. We prove that 4 of the corresponding basissets
be separable, while 6 must be totally entangkead Bell-like). For three qutrits, 728 operators partition into 28
MCS'’s with less rigid structure, allowing for the coexistence of separable, partially entangled, and totally
entangled(GHZ-like) bases. However aninimumof 16 GHZ-like bases must occur. Every basis state is
described by am-digit trinary number consisting of the eigenvaluesNbbbservables constructed from the
corresponding MCS.

DOI: 10.1103/PhysRevA.70.012302 PACS nuniber03.67—a, 03.65.Ud, 03.65.Wj

I. INTRODUCTION sets” are easily constructed as tensor products of unitary one-

Systems of three-state particl@gutrits) have been much qutrit operators_[lB,lﬂ. This set of & operators partitions
under discussion recently because they expand the potentigito 3'+1 maximally commuting subsetMCS’s) of 3"-1
for quantum information processing and they have been redperators eacfi7], expending all operators in the basis apart
alized and controlled experimentally. Specific realizations fofrom the identity. Each of these MCS’s contains a smaller
use in quantum communication protocols include biphotonsubset ofN operators that provide the trinary labels for the
[1,2], time-bin entangled photor{8], and photons with or- corresponding basis states. TH&+ distinct basis sets thus
bital angular momentunf4]. Qutrit quantum computation defined aremutually unbiased17]; i.e., the inner product
with trapped ions has been described theoretid&llywhile ~ between any two states belonging differentones has the
one-qutrit gates have been demonstrated experimentally wittommon magnitude, 8’2, Since measurements within each
deuterong6]. Specific advantages of qutrits over qubits in- basis set provide™3-1 independent probabilities, thé'81
clude more secure key distributiofiz-9], the solution of the  basis sets together provid€-91. This number is just suffi-
Byzantine agreement problefa0], and quantum coin flip- cient to determine the density matiiwith Trp=1).
ping [11]. The partitioning structure described above is guaranteed

In this paper we describe the general framework for quanbecause 3 is a prime number: Referefitg proved that if
tum tomography oN-qutrit states provided by mutually un- the dimensior(d) of a Hilbert space is equal to a power of a
biased basis sefd2] and the special operatogsr measure- prime numbeilike 3V), then a full complement of+1 mu-
ment9 associated with them. AN increases, these operators tually unbiased basis setsUB’s) exists. The numbed+ 1
retain their fundamental trinary charactgraving three dis- is necessary and sufficient to determine a mixed giatéth
tinct eigenvalues unlike the more familiar operators of maximum efficiency[12]. Referencg17] proved thatd+1
compound angular momentum, for example. This means thd?lUB’s exist if and only if a partitioning, complete, and or-
the quantum numbers specifying tNequitrit basis states are thonormal operator set exists and showed how to construct
N-digit trinary numbers: For separable states, each digit corsuch operator sets from Pauli operators. These operators
responds to a statement about a single qutrit. For totally eridentify the measurements associated with each MUB. It is
tangled states in which the entanglement is shared among allorth mentioning that while MUB's are desirable for quan-
qutrits, every statement refers to a joint property of two ortum tomography generally, they have proven instrumental in
more (perhaps ajl qutrits; no statement refers to a single certain proposed quantum key distributidis] and in the
qutrit. Such descriptions parallel those introduced recentlygolution of the mean king’s problem for prime power dimen-
for N-qubit systemg13,14. In this case, the descriptions sions[19]. The last example is a problem in quantum state
rely on the existence ol commuting trinary operators. If determination in which both the choice of a measurement
these are Hermitian, they comprise a “complete set of com¢the basis s@f and its outcométhe state within the basis
muting observables” in the familiar sengkb] that they de- are to be determined.
fine a basis in the Hilbert space of pure states, whose dimen- It should be noted in this connection that the partitioning
sion is 3", property of an operator set is not guaranteed by completeness

But the density matriy describing mixed states resides in and orthonormality. A good counterexample in the one-quitrit
a vector space of dimension Stogether with all other op- case is the conventional set of generators of (U
erators on the state space. Thigeratorspace is spanned by \i,...,Ag [20]. This setis orthonormal(Tr\\;=28;) and
a complete and orthonormal set of operafarshonormal in  complete(with the inclusion of the identity but it doesnot
the sense 'I(OiTOJ-) ~ &;]. Appropriate trinary operator “basis partition into four subsets of two commuting operators each.
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So the\; operators provide a basis for quantum tomographyset of operators on the one-qubit Hilbert space. The eigen-
[21], but not one associated with mutually unbiased basidases ofX, Y, andZ are mutually unbiased: An eigenstate of
sets. In Sec. Il we shall construct Hermitian operator basiZ has equal probabilities of being found in any eigenstate of
sets that have two desirable properties: They partition so @& or Y. The eight operators & +X, =Y, and 4 form the
to define MUB'’s, and they generate &)Y [or SU3") in the  Pauli group[16] of a qubit. A larger Pauli group is some-
general cage times defined as we[R3], one which includes the Hermitian
We are interested here in the discrete group properties afounterpartY (Z andX being Hermitian as they stapdrhis
the unitary basis operators themselves. Rheperators that group consists of 16 elementsZ, £iZ, ...). The more ex-
define basis states also generate, by multiplication, all reelusive former definition conforms to the general one that
maining operators in the MCS, plus the identity, thus form-applies to quitrits.
ing a group of order '8 The full operator basis consisting of ~ While the operators defined above are all square roots of
all MCS’s plus the identityone copy, totaling 9" operators, the identity | (2x2), the corresponding operators for the
doesnot form a group, but only because multiplication be- qutrit case are all cube roots bf3 X 3), We may write the
tween operators from different MCS’s generates one of thgomplete orthonormal set 4sV, X, Y, Z, V2, X?, Y2, andZ?,
three phase factors, e@@nmi/3). Thus, a group of order 3 since each element has a square, which is also its inverse. We
x 9N (which we shall call the Pauli group ®f qutrits) con-  may define in analogy with the above, following Refs.
sists of the operator basis triplicate—i.e., each operator [16,17,22,
multiplied by each phase factpt6]. Its factor groups relate

closely to the partitioning structure. Those of ordéf &e z=[nanl,
most useful because they are isomorphic to all of the MCS
groups. X=|n+1)nl,
In the next three sections we discuss the one-, two-, and
three-qutrit cases to illustrate the general principles outlined Y =XZ=[n+ e,
above and also to highlight special properties that emerge in
each case. The one-qutrit section describes the Pauli group V=XZ=|n+1w?n|, 2

and illustrates its connection with tiienique partitioning of where summation is implied over the values0, 1, 2(cor-

the eight-operator basis set. The two-qutrit section describeﬁesponding to spin projections 0, +1, -1 respectiyedyidi-

the mutually unbiased bases sets, separable and totally €5 is modulo 3. and
tangled, and the corresponding operator sets. While many '

partitions exist, we prove that thestructureis unique. The w=exp2mi/3). 3

ach of the four operators in E(R) defines, as its eigenba-

d th ot diti for the three t Th &s, one of the four required mutually unbiased basis sets
and the coexistence conditions for Ihe three types. The co 24], and each operator, together with its square, forms a
cluding section summarizes the results and interprets the tri- c

nary descriptions of separable and entangled states in terms

0; complemfnltarity tbetwe_?n inbdi_vifdual an(;j. joint prolpet;tieioperators, we introduce a concise notation reflecting their
or many-particié Ssystems. 1wo Drief appendixes Supply Dacky ijqng upon the eigenstatesbtthe standard basis‘diag-
ground material for reference as desired while reading th%nal” (1,2,22), “right cyclic’(X,Y,V), and “left cyclic”
text. Appendix A reviews the_gonpectlon between mutually X2,¥2,\2). Then, letting the index=0, 1, 2 denote the op-
unbiased bases and the partitioning of an operator set. A Srator within each arouin
pendix B proves a theorem that describes the general rela: grouping,
tionship between such operator partitionings and Pauli factor E =27 =|nye"(n|,
groups.

To facilitate writing the multiplication rules among these

R =XZ=|n+ L)o"(n|,

II. ONE QUTRIT L= R{’f — |n>w‘”'<n + 1|. (4)

For comparison, recall briefly the Pauli operators for agne can also think loosely &, as “raising” and_, as “low-
single qubit, written in outer product notatiof22] as ering” operators with respect to the standard basis, but the

Z=|n)(- D)n| “cyclic” designations are more descriptiy25]: R, andL, are

norm preserving, whereas the usual angular momentum rais-
ing and lowering operators annihilate the uppermost and

X=[n+1nl, lowermost rungs of the ladder, respectively. The multiplica-
tion rules may be constructed immediately. For conciseness,
Y =XZ=|n+1)(- )Xn|, (1 nine expressions are condensed into six by writing the last
where summation is implied over the values0, 1 (for spin X in the form of commutators:
up and down along), and addition is modulo 2 so that the EEm=Em
second equation, for example, reads|1)(0|+|0)(1|. The
four operatord, X, Y, andZ form a complete orthonormal RRm=o™'L__m
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LL,= wm_lFQ—m, TABLE I. The partitioning of 8 one-qutrit operators into 4 maxi-
mally commuting subsets. If all entries are multiplied byw],and
[R,E.]=(1- MR, w?, then the top line, including, forms the identity elemerd of the
’ - +ms

factor group[Eg. (6)], while the first and second columiselow
the ling) form the’ R and £ elements, respectively.

[L|,Em] = (wm - 1)L|_m,

| Z z?
[RiLml = (0™ = DB, (5) < v
It is apparent from this multiplication table that every one of v \2
the eight operatorsZ, ...,V?, commutes only with itself, its v 2
square, and the identity. Consider for example It com-
mutes withR,, only if m=1, with L, only if m=| (sinceL,, is & R L
then its squane and withE,, only if m=0. It is also apparent
that thelack of commutativity resides entirely in the phase
factors. E=(1,X,27),
These phase factors spoil the property of closure under
multiplication and prevent these nine operators, by them- R = (VIR 29
selves, from forming a group. But, as mentioned, a group of R
order 27(the Pauli group of a qutnitis formed by taking the L=02Y.2). ®)

nine basis operatoris triplicate—i.e., each operator multi-

plied by 1,w, and o o Table | and its four variations illustrate théy these factor
This Pauli group has a trivial factor group of order 9, groups are isomorphic to all of the subgroups formed by the
whose elements consist of the triplds=(l,wl,»’), Z  MCS's and(ii) every factor group elemeriapart from the
=(Z,0Z,0°2),..., V*=(V?,0V?,0?V?). The multiplication  jdentity) contains one and only one operator from every re-
ZX=Y means that the product of any elementdivith any  maining MCS. We prove these two points in Appendix B for
element ofX’ is equal to some element 9f. This group is  the general case ®f qutrits and apply them in later sections.
Abelian because no factors ef' appear in its multiplication It is instructive to compare the order-3 qutrit factor groups
table. with their qubit counterparts, which are of order 2. The iden-
Factor groups of order 3 are more interesting. One extity element in the qubit case could e (1, £2), with the
ample is apparent from Eqe5). The factor group elements, other elementthe “flip” element, say being F=(£X, £Y).
each consisting of nine Pauli group elements, may be depermutations oK, Y, andZ produce the other factor groups
noted by of order 2.
£=W'E =(T,2,29), Let us turn finally to the observables. Since the eight uni-
tary operatordJ=2Z, ...,V andU™=Z2, ... V2 form (together
with the identity a complete orthonormal set, we can imme-
diately construct an alternative Hermitian basis through the
transformation

R=0"R=(X))V),

[-: = wnL| = (Xzayzyvz)a (6) I
H=(U-U"/i\3, (9)
wheren=0, 1, 2 andl=0, 1, 2. The multiplication table

consists of H=(U+UN/3. (10)

2_ 2_ .
RE=L, L7=R, RL=LR=E, @) The four operators of typ&d have the trinary spectrum

and obvious equalities involving. This group is, of course, (0,+1), and the four other$d have the spectrung2,-1,
isomorphic to the groul, e, »?. Equations(6) provide a  -1)/,3. The relationship between eakhand its compatible
useful summary of the relationship between the 27 Pau'bartnerﬁis

group elements, the factor group of order 9, and the facto o _

group of order 3. H = (21 - 3H?)/43. (12)

There is a useful relationship between the last factor ) ) ) )
group and the partitioning structure. Any of the four MCS’s The orthonormality relation among all eight is
may be combined with the identity to form a subgroup of the Tr(HH,) = 265, (12)
Pauli group. In Table I, we pickl,Z,Z?). We define this, in o ) ) )
triplicate, as the identity elemedt=(Z, 2, 22) of the factor ~Where indices run from 1,8, with (say odd values corre-
group. The columns belowin triplicate) form the elements sponding taH and even tdd. The properties of orthonormal-
R and L. ity and tracelessness in fact require that compatitdemit-

The first entry in each column generates all remainingan partners have different spectra. One can then see that the
entries by multiplication with elements ¢f—i.e., X¢=R  standard generators; of SU(3) fail to partition, because
and X2€=L. There are four such factorizations correspond-seven have the spectrutal,0) and one hasl,1,-2/43.
ing to the four choices of. A second example is The H; operators defined here divide equally among these

012302-3
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TABLE Il. A partitioning of 80 two-qutrit operators into 10 maximally commuting subsets, each consisting of 8 elements. Factor group
elements are identified at the bottom: The identity element consists of operators in the t@acbwin triplicate’), and remaining elements
correspond to the columns directly above thémtriplicate).

Il 4 122 ZI 2z 272 Z2 7%z 7272
IX X2 Xl XX XX X2 X2X X2x2
Y Y2 Yl YY Y'Y Y2 Y2y Y2Y?2
\Y V2 VI \AY; V\2 \Zi av; VA2
ZX 72X vz XY YV V2z2 Y2v X2y2
ZY 2Y? XZ YV VX X272 V2X Y2\/2
yAY, 22 YZ VX X¥ Y272 X2y \2X2
72X ZX2 YZ2 XV VY2 Y27 \2Y X2
Z2Y 7Y VZ2 YX X\P v2z X2V Y2x2
Z2v Z\2 XZ2 VY Y X X2z Y2X \2y?2
EE ER &c RE RR RL LE LR LL

two spectra, and it will be clear that the equal division gen-(£,R,L)® (£, R, L)—which relate to the partitioning of the

eralizes toN qutrits. The 9-1 partitioning Hermitian opera- basis operators.

tors provide an optimally symmetrical set of generators of The basis operators partition into ten MCS’s of eight op-

su3N). erators each. One such partitioning and the associated
In the one-qutrit case, the fotninary H operators play a MUB’s were presented in Ref19]. We show anothefsimi-

special role: They define the four mutually unbiased basisar) partitioning in Table Il together with a related factor

sets completely, they generate their partrigrthrough Eq.  9roup. The factor group is defined by choosing its identity

(11), and they generate all eight unitary operators through €lement £ to be the first row in triplicate—i.e..&
=(Z, Z, 2% for both qutrits. All other elements are identified

U = exp(2@iH/3), U' = expg(- 27iH/3). (13)  in the bottom row, and these consist of the nine entries in the

; ; lumns directly above, all in triplicate. Each such element is
To verify that Egs(13) are equivalent to Eqg9) and(10),  ©° /€, alll © .
we expand the exponential noting that all odd powersiof generated by a multiplication such &®=IXx £&. While

are equal tcH itself and all even powers are equalHig: _the fac;c.)r group is determined uniqyely qnceﬂ&element
is specified, there are several ways in which the elements can

i\E 3, be arranged within each column so that eveny is a maxi-
U=I+ 7"' ‘EH - (14 mally commuting subset, and consequently, all eigenbases

are mutually unbiased. However, these special arrangements
Equation (11) then shows thatU and U' are equal to are not likely to occur automatically, because only 12 out of
(ﬁiiH)\E/Z, which is the inverse of Eqg9) and(10). the (9!) possible arrangements within this particular factor-
ization result in commuting subsets. The theorem of Ref.
[17] proves that a partition exists, and our Appendix B
. TWO QUTRITS proves that it conforms to the structure of a factor group as
_illustrated in Table II. This structure is useful in determining
A complete orthonormal set of operators on the two-quitrity|| possible partitions, of which there are 48. Before embark-
Hilbert space is provided by the 81 tensor products of thgng on this task, however, it will be useful to discuss and
form (1,Z, ... V31®(1,Z, ... V%), Henceforth, in most ex- cjassify the basis sets resulting from Table II.
pressions we shall drop both tlkesymbol and the subscripts

referring to the individual qutrits, so that expressions ke ) )

or Y2V or IZ will be understood as tensor products. These A. Mutually unbiased basis sets

operators have the following properties in common with A “complete set of commuting” operators consists of any

their one-qutrit factors: Each generates a cyclic subgroup ofvo operators in a given row that are not squares of one

order 3—namely(ll ,PQ,(PQ)?), with (PQ)*=1l—and each  another. We shall refer to such operator pairgeserators

has the trinary spectrurfl,»,®?). The product of any two because, in addition to providing the two independent quan-

operators is equal to a single operator multipliedddy so  tum numbers needed to specify the nine basis states, they

that the Pauli group of two qutrits has order>83=243. generate the group consisting of the remaining operators in

Each of these properties follows from the fact that operatorsheir row and the identity.

on one qutrit commute with operators on the other. We may choose the first and third entries in each row as
Clearly there is a factor group of order 81, each of whosehe generators. Then, because those of the top four rows are

elements consists of a basis operator in triplicate. But therall one-qutrit operators, the corresponding bases must be

are more interesting factor groups of order 9—for exampleseparable. The first-row basis states are wriftem),, the
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indices (n,m) being two-digit trinary numbers that specify concise general proof will be given in the following subsec-
the eigenvaluegw”, ®™) of the one-qutrit factors in the sub- tion.
script, Z; and Z,. Second-row states are writtém, m),,, de- Rows 8-10 of Table Il define states that differ subtly from
noting products of eigenstates Xf andX,, and similarly in ~ those of rows 5-7. Consider the generattX and Y7 of
rows 3 and 4. The full basisetsare denoted by &,Z2), row 8. The Hermitian counterpart of either of these, for ex-
S(X,X), and so forth(“S” for separablg ample,
Generators in all remaining row5-10 are characterized Y
by the failure of commutativits be\'iqweer?their individual one- H(Z*X) = (ZX = 2X)/iv3, (18)
qutrit factors. As in the case of twqubits [14], the joint  refers to differences, not sums of individual qutrit indices: If
eigenstates of such operator pairs must be totally entanglefbint eigenstates oFZ?X and YZ* are expanded in the same
Focusing on the fifth row, we look for joint eigenstatesZ&  product basis &,X) used for Eq(16), the result takes the
and VZ. Let us first write the most general form of eigen- form
states oZX as expansions in separable states),, belong-
ing to SZ,X):

|Wo)=(al0,0y+b|1,2 +¢C

1

1
|nvm>B(22x,y22) == E Dnmlevn + k>zxv (19
2,1)z Vi1
zx

showing that the eigenvalu@) of H(Z2X) is the difference
|¥1)=(d|1,0) +€[2,2) + |0, 1),y between eigenvalues bf(X,) andH(Z;). Of course one may
choose different operators to label the states, and in row 8
1,), (15 there is one choiceXV, which refers to sums, while the other
three independent choices refer to differences. Rows 8-10
(namely, 1, o, and w?, respectively and the coefficients share the preference for differences, while rows 5-7 share
o ' the preference for sums. These balanced asymmetries can be

a,... k are arbitrary. The coefficients are then fl_xed by re-in erchanged but not removed by renaming the operators,
quiring that the general states above also be eigenstates o they appear to be inevitable

VZ. There are three choices of coefficients in each expres- In all the above examples, basis states have been written

sion, corresponding to the three eigenvaluey/af The sa- in “minimal” form—i.e., three-term expansions for entangled

lient feature is that the coefficients have equal amplitudes . N
their relative phases being integral powerssofThe physical states and single termy definition for separable states.

interpretation of this is that whil&X takes a definite value, This requires a special choice of “quantization axes™ for both

its factorsZ andX are maximally random. That is, the sum of qutrits, a phpice thqt Is unique for S. states although not for B
the two indices(the subscript of,) is .fixed vx;hile each states. It is interesting to note that if one instead expands all
n y

index by itself takes all three of its possible values with equagéjeB;taSFezs ;)1 tr?aevitirilr?:-rtde rbnz;\s:asf;( an)s'iz)hnesn ilfl ?g::sgil:t' A
probabilities. With this in mind, we can write all nine row-5 ' . P » Of NECEsSIty.

- ; full complement of MUB'’s was written out explicitly in this
basis states in the form . S S .
manner for solving the mean king’s problem in nine dimen-
sions[19].

|W,) =(g|2,0)+h|0,2) + Kk

where the subscripts o denote the eigenvalues &X

2

1
|n!m>B(ZX,vZ) = _52 Cnmlean - k>zx: (16)
V=0 B. 4S-6B theorem

We now address the problem of enumerating all partitions
_of the operator set and of proving that all have the same
. o . t'structure, producing exactly four separable and six totally
tnrr]]arym number (n,m) specifying the two eigenvalues o iangied basis sets. We begin by proving that there must be
(", ") of the operator$ZX,VZ), respectively. The indices eyactly four separable bases. Consider any operator having
(n,m) themselves are just the eigenvalues ofttieary Her- g jdentity factor—sayPl. The most general MCS to which
mitian counterparts defined by E); for example, it may belong is generated by itself and any operator that

_ TN N, commutes with it, apart from a power of itself. Such an op-
H(ZX) = (ZX=ZX)/IV3. (17 erator must take the formQ, leading to the MCS
So, restating the physical interpretation in terms of observ{ll ,PI,P2) & (II,1Q,1Q? -II, whereQ may be any oWV, X,
ables, the eigenvalu@) of H(ZX) is the sum, modulo 3, of Y, or Z, squares being redundant. This subset, or its two
the eigenvalues ofi(Z;) and H(X,) (k and n—k, respec- generators, defines the separable basis @05 Since there
tively), the sum being definite while the summands are ranare four operators of typ®Pl to begin with and since each
dom. must belong to a MCS containing a distin€ operator, we
The randomness applies not just to the one-qutrit factorsonclude(1) that there are 4 MCS'’s of this type ari®) there
in the two generators as shown above, bualloone-qutrit — are 24 distinct choices of these 4 subsets. Correspondingly,
operators. This follows most dramatically from the stunningthere are 4 separable, mutually unbiased basis sets and 24
appearance of all 16 one-qutrit factors in every maximallydistinct choices for this quartet. The distinction is simply one
commuting subset in rows 5-10. Smy one-qutrit factor of renaming the basis states of one quitrit while keeping those
may appear in a generator and the above arguments apply.d the other qutrit fixed. We may therefore conclude from the

where C3 . =1. The subscript on the left side,(BX,V2),
refers to the entangled basset (“B” for Bell like). The
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specific example shown in Table Il that the remaining six TABLE Ill. These 13 three-qutrit operators and their squares
basis sets are totally entangled. It is instructive, however, téorm a maximally commuting subset whose eigenbasis consists of

prove this result in more general terms. totally entangled three-qutrit GHZ states.
Since the required separable bases exhaust all operators
containing an identity factor, it suffices to show that any XXX Yyy VWV
MCS lacking such operators must produce a totally en- XYV YVX VXY
tangled basis set. We make use of E47) of Appendix A, XVY Y XV VY X
which expresses the projection operaRﬁr of any statea 727| 727 1Z27 277

belonging to the basi# in terms of all the corresponding
operatorsU?, ... U4, and the identityl=U4. The coeffi-
CientSs;a all have unit amplitude and, in particulary,=1. row, andXZ? is ruled out because it generaté¥, which is
The overall factor ofi *=1/9 guarantees that T,=1. The  found in the fourth row. Therefore, in total, only two choices
reduced density matrix of either quitrit is the partial trace ofexist for the last six rows given the first four rows. The
P’; over the states of the other. The partial trace vanishes fathoice not shown here appears in Table V of R&8]. With

all operators witha=1, ... ,d-1 because no identity factors 24 options available for the first four rows, there are 48 dis-

appear, leaving onla=d: tinct partitions of the full operator set. Only the last choice,
1 1 involving just the totally entangled basis sets, does not cor-
p1=TrLPA==Trl = =1, (20)  respond to a simple relabeling of one-qutrit states.
‘9 37
wherel, is the identity operator on qutrit 1. Similarly, IV. THREE QUTRITS

=1,/3, showing that the pure stat%’;} is totally entangled.
This proves that all six remaining MCS'’s give rise to totally
entangled basis sets.

It is interesting to note that the absence of identity factor
in a MCS implies two other points encountered earl{&y:
All one-qutrit operators must appear as factoffo prove
this, assume that they do not. Then at least one such fact
would have to appear twice, producing a pair suckP@sand
PR But these are distinct and commute onlyREQ?, in
which case their produ¢P?l) contains a single identity fac-
tor, producing a contradictiori2) No two generators of such
a MCS may have compatible one-qutrit factorhis follows
from point (1), noting thatPQ and P?Q? appear in the same
MCS but cannot be generators.

There are =729 tensor product operators suchVa&?e,

Y2IX, ZIl, etc., that comprise a complete orthonormal set. As
efore, each generates a cyclic subgroup of order 3 and has
he trinary spectrum. The product of any two is a single

operator timesw", so that the Pauli group has ordex 33

:r2187. The more interesting factor groups are of order 27—
or example,(£,R,L£)%3; these relate to the partitioning of

the basis operator set intd-81=28 maximally commuting

subsets of 3-1=26 operators each. The new aspect that
emerges witiN=3 is that different partitioningtructuresare
possible. For example, if the number of separable basis sets
is maximized at 4, then all remaining 24 basis sets are totally
entangled. However, one may choose fewer than 4 separable
bases, requiring that some others have partial entanglement.

Let us begin by illustrating the three types of basis sets and

corresponding MCS'’s that can occur. We shall then deter-

Having counted 24 choices for the four separable basigline the partitioning structures that are possible, without at-
sets, we ask finally how many choices remain for partition-tempting to count the actual number of each type.

ing the complete operator set. It suffices to begin with the Product bases may be denoted B QR), whereP is any

specific choices of rows 1-4 as written in Table Il, since allof V, X, Y, or Z, etc. These are eigenbases of the one-quitrit

others correspond to relabeling the operators on the secormperatorsPll, IQI, andIIR, which generate the maximally
qutrit. To count the remaining options for partitioning the commuting subsetd,P,P?) & (1,Q,Q% ® (I,R,R?). As with
operators in rows 5-10, we count the ways to rearrange opgwo qutrits, there are only foynonredundantchoices forP
erators in the third column, keeping those of the first columrand therefore at most four such subsets, with four corre-
fixed, in such a way that these pairs generate compatiblsponding product bases. As before, of course, there are many
rows that do not overlap with any other row3his simpli-  choices for these quartets.

fication rests on the factor group theorem of Appendix B.  Totally entangled basis sets in which the entanglement is

ConsiderzZX from the first column. It commutes with'Z, shared equally among all three qutrinalogous to three-

XZ, andYZ and no others from the third column. The first qubit GHZ basis setfl4]) arise from MCS’s similar to the

and third choices are viable, while the second must be ruledxample shown in Table lI[*Similar” means “same number

out because it generatésy, which already appears in the of | factors.”) We show half of the operators which, together
third row. Given either viable choice, there remains only onewith their squares, comprise the full MCS of 26. Each row,
choice for partners oY andZV that does not reproduce an together with its squares, forms a subgroup when combined
operator already existing in some row above. Moving to thewith ZZZ its square, and the identity. The three generators of
last three rowsZ?X commutes withY 22, VZ2, andXZ? and  the full MCS may be any three operators that do not belong
no others from the third column. Given our choice for theto the same subgroup. The operators in the last row are no-
fifth row, only the first choice is viableVZ? is ruled out table because thegand their squargsare diagonal in the
because it generatedV, which already appears in the sixth separablebasis $272). The first three operators specify dif-

C. Final count: 48 partitions
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ferences between two one-qutrit indices, and the fourth opdifferences are interchanged wherever the third quitrit is in-

erator specifies the sum of all three. A simultaneous eigenvolved, and the expansion in the same separable basis
state (with the sum and all differences equal to zero, forS(ZZ2) takes the form
examplé is )

1
[¥) = (2|00 + b|11D) + ¢[222),., (21) In M= =2 Damdkn +k =1 =Ko (24)

where the subscript indicates separable states, and the coefhere G refers to GZ?Z1,7%122,XXX?) andm is the eigen-
ficientsa, b, andc are arbitrary. There are nine expressionsvalue of H(XXX?), etc. Clearly there are four distinct expan-
of the form of Eq.(21) which are simultaneous eigenstates of sions of the type seen in Eq22) and(24), corresponding to
fourth-row operators, each being a superpositikn0,1,2  the four ways of distributing—) signs among thé's.

of separable statek,n+k,| +k),,,with arbitrary coefficients. The Aharonov statgA) that is used in the solution of the
The fourth-row operatorér, more precisely, their Hermitian Byzantine agreement probleftQ] is the (unique spin sin-
counterpartsd) have eigenvalues, |, (I-n), and(I+n), re-  glet state of three qutrits. It is the superposition of all six
spectively, which reflects the fact that only two of them arepermutations of 0, 1, and 2 among the three qutrits, with
independent. In order to fix the coefficients in the 9 exprescoefficients(1/16) for even permutations ang-1/16) for
sions and extract the 27 simultaneous eigenstates of all opdd. Thus, it is the superposition of two states of the form of
erators in Table Ill, we require that these expressions bg&q. (22),

eigenstates of a third independent operator—32¢X We

may write the 27 basis states in analogy with Etp) as A) = T§(|1’2’]>G_ 12,1, Do), (25)
N
2
In,1,myg = i_z Comdk,n+ K1 +K),,, (22) where the third entry in the kets is the eigenvalueXofX
V3k=0 which is a cyclic permutation operator, and the first two en-

tries distinguish even and odd permutations.
where|C,,md =1, the subscript G identifies the entangled ba- Let us finally illustrate MCS types that produce basis sets
sissetG(Z%ZI,Z%1Z,XXX), andn, |, andm are the eigenval- of mixed entanglement, in which one particle is unentangled
ues of (the Hermitian counterparts othe three operators while the other two are maximally entangled in the Bell-like
listed, respectively. For example, H(XXX)=[XXX  states of the previous section. One such subset that singles
—(xxx)T]/i\E_)m_ out the first particle is generated &l, 12X, andlYZ. The
The presence of the operat§iXX in this list might sug- corresponding  basis set can be denoted by
gest the alternative separable basis $¥9&) for the expan-  SB[Z1;(ZX,Y 2, 3], which indicates products & states for
sion of the|n,| , M) states. However, such expansions wouldparticle 1 with Bell states for particles 2 and 3. States within
require sums of nine terms, not three. The basigZ3) is this basis set can be expanded using the coefficients defined
special in reducing the expansion to its “simplest” form. Thisin Ed. (16):
situation is analogous to that of three-qubit GHZ states, 2
where the “simplest” form consists of two-term expansions iE Crmdn kI = K) (26)
in separable states. There too the simplification depends on a V3o, TimkE e
special choice of quantization axes for the individual qubits,
other choices requiring four- or eight-term expansions. where the subscript SB is short for §8;(ZX,Y 2), 3]. Here
The “three-qutrit GHZ” states, like their three-qubit coun- the first index does not vary in the sum; in other basis sets
terparts, share the property that all one-particle reduced desuch as SBZ,;(ZX,Y2), 3] the second would be held con-
sity matrices are proportional to the identity. The proof ofstant. A maximum of 12 such basis sets can be mutually
this fact again follows directly from the operators them-unbiased: Any qutrit can be singled out to be unentangled,
selves: We expand the projection operaRﬁr of any such and in each case four basis sets are possihl&, Y, or Z).
basis state in terms of the MCS operators using(B@) of  In a partition where this maximum is realized, the remaining
Appendix A. Since no operator in the expansion has mord6 basis sets must all be of the GK@) type.

In,l,m)sg =

than a single identity facta@apart from thdll /27 term), the To understand the range of partitioning structures, we
partial trace oiPﬁ over any two quitrits is proportional to the classify the 728 operators as one-bgtlyo identity factors,
identity on the other—for example, two-body (one identity factoy, and three-bodyno identity

factorg. The total number of each type is given in Table IV
A1 1 and compared with the numbers that occur within each type
pr=Tr Py = oo gl =2l (23)  of MCS. This table shows that there can never be more than
4 mutually unbiased separable bases, since this would re-
There are subtle differences among three-qutrit G baseguire more than the existing 24 one-body operators. Simi-
analogous to those occurring in two-qutrit B bases, in whicHarly, there can never by more than 12 partially entangled
the expansion of Eq22) takes slightly different forms. For bases. More generally, the numbers of each type that may
example, suppose that all operators on the third qutrit areoexist within any partitioning structure must satisfy the re-
interchanged with their squares in Table lll. Then sums andations
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TABLE IV. The distribution of operators within the three types the generators. All one-quitrit attributes are perfectly random
of maximally commuting subsets: separatig, partially entangled in the GHZ-like states.

(SB), and totally entangledG). These profiles determine which  The latter two cases illustrate a sort of complementarity

partitioning structures are possible. between individual and joint properties of a system of par-
ticles. This complementarity is expressed through operator

Operators One-body ~ Two-body  Three-body sets rather than individual operators, and in generaNall
generators are required: With=3, suppose we choose two

Total numb.ers 24 192 °12 generatorZ?Z| andZ?Z from Table IlI. A third choiceXXX

One S basis 6 12 8 produces a GHZ basis, while the alternative chaitepro-

One SB basis 2 8 16

duces a separable basis. In the latter cXs€X is random

One G basis 0 6 20 while in the formerZIl is random(sinceeveryoperator out-

side the MCS of the generators is random this sense the
concept of unbiasedness of operator sets incorporates aspects

N(G) =16 + 2N(S), of both complementarity and contextuality. The compatibil-
ity of two operators does not rest on their commutativity
N(SB) =12 - AN(9), (27) alone, but on the choice of other operators to be measured.

where N(§)=0,1,...,4 is thenumber of separable bases.

The number of partially entanglg®B) bases may be 0-12

in steps of 3, and the number of GHZ bases may range from | would like to thank Jagdish and Suranjana Luthra for

16 to 24 in steps of 2. Equatiori&7) require that no other many stimulating discussions about the subject of this work.

MCS types exist, and one can easily verify that this is indeed

the case[26]. Similar coexistence conditions exist for the APPENDIX A

threequbit case, where analogous types of mutually unbi-

ased basis sets occur. However, the new and surprising as- In this appendix we review a general theorem proved in

pect of the present results is the existence ahiaimum  Ref.[17]: Afull complement of mutually unbiased basis sets

number of GHZ bases. exists if and only if a partitioning, complete, and orthonor-
mal set of operators exists. We follow the notation of a simi-
lar proof given specifically foN-qubit systems in Ref.14].

V. CONCLUDING SUMMARY First, suppose that a full complement d#1 mutually
unbiased basis sets exists in a Hilbert space of dimertsion
n terms of projection operatorB:=|A, a)(A, a|, where A

d+1 denotes the basis and=1,...d the state
e\;\llthln it, the orthonormality of each baS|s is expressed by

ACKNOWLEDGMENTS

The foregoing three sections illustrate how factonzauonq
of the Pauli group relate to operator partitions and hence ta
mutually unbiased basis sets. The factor groups of ord
3N—for example, (£,R,L))*N—are isomorphic to every
MCS in the partition. Every MCS hald generators, which Tr(pApg) = 8.8 (A1)
provide the necessary quantum numbers to label the associ-
ated basis states by-digit trinary numbers. The Hermitian 2nd the unbiasedness of different basks- B) by
counterparts of these generators form the “complete sets of Tr(PAPB) = a2 (A2)
commuting observables.” The'31 distinct sets are mutu- a B '
ally unbiased: Any state for which one set takes definite valCorresponding to each basis set, we rdaﬁnea maximally
ues produces perfectly random outcomes for all other setsommuting set of unitary operatorsy, wherea=1, ... d,

This statement applies equally well to the full MCS’s. including the identity,l| =U%, by their spectral representa-
New aspects emerge as one proceeds to larger numberstafns

qutrits. In the case of a single qutrit there is a unique parti- d

tioning of the eight operators into four MCS'’s. UQ: S e PP (A3)

In the case of two qutrits, there are 48 distinct partition-
ings, but they all have the same structure, producing four
separable bases and six totally entanglBdll-like) bases. Unitarity of U} requires thatle,,/=1, andU4=1 requires
Each of the 10 MCS'’s has two generators, so that all quansg.=1. We further stipulate that the rows of the fatrix”
tum numbers are two-digit trinary numbers. Those associatelde orthogonal,
with the Bell-like basis states refer exclusively to sums or
differences of particular one-qutrit attributes, and in doing so * — —
they impose perfect randomness alh one-qutrit attributes. E BaaPha = (8a,80) = A%, (A4)

The three-qutrit case exhibits distinct partitioning struc-
tures, allowing for the coexistence of three different types of-€-, that the scaled matrix/ \d be unitary:
basis sets according to EqR7): The GHZ-like states are dlete =1 (A5)
defined by three-digit trinary numbers, each digit referring to
sums or differences of two or three one-quitrit attributes. Atln consequence, thlgA operators form an orthonormal set
least one digit must refer to all three quitrits, as is seen froniwith the exception of the redundant |dent|t|kd§) that is,

a=1
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Tr(UATUB) = * Tr(PAPE) = dSandn,  (AB The following proof is given folN qutrits (Hilbert space
(Ua'Up) a% 2aa®opT1(PuPp) = ddapder,  (AB) dimensiond=3"), although clearly the theorem is more gen-
eral.

where Eqs(Al) and(A4) are used iA=B and Eq.(A2) and Consider the complete orthonormal set of unitary opera-

Zeq,=0 (for a#d) are Uied otherwise. EQUatioR6) Shows 14y (14} that partitions into maximally commuting subsets
that thed?- 1 tracelessJ} operators, together with the iden- A=1,...d+1, where a=1,...d-1 denotes operators

tity, form a complete and orthonormal set. The partitioningyithin each subset. The Pauli group consists of these opera-
property is guaranteed by EGA3), which implies commu- 45 plus the identity, alin triplicate (i.e., multiplied by the
tativity within subsetd(A). three phase factors") and is thus of order &=3x 9N, A

_ The converse of the above theorem may be demonstrated,pgroup # consists of any maximally commuting subset
immediately. Assume that a complete and orthonormal set O(fsay A), plus the identity, in triplicate:

operatorsUQ exists with the partitioning property. Append

the identity to each maximally commuting subset and apply F=1,0,0%) X (US, ... ,Uﬁ), (B1)
the inverse of the transformation defined by E43), ex-
ploiting Eq. (A5): whereUﬁEI. The inclusion of the phase factors makEsn
d invariant subgroup which, consisting ofl @lements, defines
A_ 1N 5 (A a factor group of orded. All of the factor group elements are
Po=d glsaaua' (A7) generated by the multiplication,
The required propertigg€Egs.(Al) and(A2)] are easily veri- Fp= UE}", (B2)

fied. Equation(A7) is useful in Secs. Il and IV.

As a final note, the operatoks need not be unitary. One with fixed B#A andb=1, ... d, the last entry reproducing
can choose the matrixto have real entries makirigg\ Her-  the identity elementF4=F. The product rule of thes& is
mitian, for example. The matrix/+d must then be orthogo- identical to that of theJp themselves, modulw,,
nal to ensure orthonormality of the s@t5}. 5 .

FoFe=UpFULF=Uy U F, (B3)
APPENDIX B showing that indeed they form a factor group as advertised.

In this appendix we prove the relationship between parti- To prove the theorem stated above, notice that every
tionings of the operator sgU4} and factorizations of the Fy, (b#d) contains a distinct operator By each in triplicate.
Pauli group,{(l,w,wz)xug}. Simply statedany maximally ~ But there ared choices ofB (B+# A), every one of which
commuting subset (say, A) in the partition corresponds to thenust generate the same factor group elements. Therefore ev-
identity element of a Pauli factor group. The other element®ry F, (b#d) must contain a distinct operator from every
contain one and only one operator from every other MCSmaximally commuting subset other thAneach in triplicate.
(B#A). The factor group is isomorphic to every MCS (plus This accounts for the full constituendd) of eachF, so
the identity, and in triplicate) the theorem is proved.

[1] A.A. Zhukov, G.A. Maslennikov, and M.V. Chekhova, JETP [11] A. Ambainis, e-print quant-ph/0204063.

Lett. 76, 596 (2002; quant-ph/0305113. [12] W.K. Wootters and B.D. Fields, Ann. Phy&\.Y.) 191, 363
[2] A.V. Burlakov et al,, Opt. Spectrosc94, 684 (2003. (1989); in Bell's Theorem, Quantum Theory and Conceptions
[3] R. Thew, A. Acin, H. Zbinden, and N. Gisin, Quantum Inf. of the Universeedited by M. KafatogKluwer Academic, Dor-
Comput. 4, 93 (2004. drecht, 1989 pp. 65-67.
[4] A. Vaziri, G. Weihs, and A. Zeilinger, Phys. Rev. Let9, [13] A. Zeilinger, Found. Phys29, 631(1999); C. Brukner and A.
240401(2002. Zeilinger, Phys. Rev. A63, 022113(2001).
[5] A.B. Klimov, R. Guzman, J.C. Retamal, and C. Saavedra,[14] J. LawrenceC. Brukner, and A. Zeilinger, Phys. Rev. 85,
Phys. Rev. A67, 062313(2003. 032320(2002.
[6] R. Das, A. Mitra, V. Kumar, and A. Kumar, e-print quant-ph/ [15] K. Gottfried, Quantum MechanicgBenjamin, New York,
0307240. 1966, p. 63.
[7] H. Bechmann-Pasquinucci and A. Peres, Phys. Rev. B&t. [16] J. Preskill, Caltech, Lecture Notes, Physics 219, Chapter 7, pp.
3313(2000. 90-91, available at http://www.theory.caltech.edu/~preskill/
[8] D. Bruss and C. Macchiavello, Phys. Rev. Le88, 127901 ph219
(2002. [17] S. Bandyopadhyay, P.O. Boykin, V. Roychowdhury, and F.
[9] T. Durt, N.J. Cerf, N. Gisin, and M. Zukowski, Phys. Rev. A Vatan, Algorithmica34, 512(2002.
67, 012311(2003. [18] N.J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys.
[10] M. Fitzi, N. Gisin, and U. Maurer, Phys. Rev. Le&7, 217901 Rev. Lett. 88, 127902(2002.
(2001). [19] P.K. Aravind, Z. Naturforsch., A: Phys. Sck8, 85 (2003.

012302-9



JAY LAWRENCE PHYSICAL REVIEW A70, 012302(2004

[20] A.W. Joshi,Elements of Group Theory for Physicigid/iley [23] M.A. Nielsen and I.L. ChuangQuantum Computation and

Eastern Limited, New Delhi, 1937p. 139. Quantum Information(Cambridge University Press, Cam-
[21] R.T. Thew, K. Nemoto, A.G. White, and W.J. Munro, Phys. bridge, England, 2000p. 454.
Rev. A 66, 012303(2002. [24] I. Ivanovig, Phys. Lett. A228 329(1997.

[22] J. Schwinger, inQuantum Mechanics—Symbolism of Atomic [25] | thank Mark Byrd for suggesting these names.
Measurementsedited by B.-G. EnglertSpringer-Verlag, Ber-  [26] It is instructive to show that all possible generator sets lead to
lin, 20017). one of the three MCS types listed.

012302-10



	Mutually Unbiased Bases and Trinary Operator Sets for N Qutrits
	Dartmouth Digital Commons Citation

	tmp.1540839001.pdf.Cy5ey

