2,386 research outputs found

    Dysplasia epiphysealis hemimelica of the talus

    Get PDF
    Dysplasia epiphysealis hemimelica is a rare developmental disorder with unknown etiology affecting epiphysis in childhood. The lesion is an osteochondroma arising from the epiphysis and increasing in size until skeletal maturity is reached. Surgical treatment is mandatory when symptoms such as pain, joint impingement or deformation are present, and yields good results when the mass is juxtaarticular or extraarticular. In those cases where articular symptoms are not present and only mass evolution is observed, surgical treatment is not recommended before skeletal maturity has been reached. A case of DEH located in the talus and successfully treated with surgery is presented

    Polynomial Kernels and User Reductions for the Workflow Satisfiability Problem

    Get PDF
    The Workflow Satisfiability Problem (WSP) is a problem of practical interest that arises whenever tasks need to be performed by authorized users, subject to constraints defined by business rules. We are required to decide whether there exists a plan -- an assignment of tasks to authorized users -- such that all constraints are satisfied. The WSP is, in fact, the conservative Constraint Satisfaction Problem (i.e., for each variable, here called task, we have a unary authorization constraint) and is, thus, NP-complete. It was observed by Wang and Li (2010) that the number k of tasks is often quite small and so can be used as a parameter, and several subsequent works have studied the parameterized complexity of WSP regarding parameter k. We take a more detailed look at the kernelization complexity of WSP(\Gamma) when \Gamma\ denotes a finite or infinite set of allowed constraints. Our main result is a dichotomy for the case that all constraints in \Gamma\ are regular: (1) We are able to reduce the number n of users to n' <= k. This entails a kernelization to size poly(k) for finite \Gamma, and, under mild technical conditions, to size poly(k+m) for infinite \Gamma, where m denotes the number of constraints. (2) Already WSP(R) for some R \in \Gamma\ allows no polynomial kernelization in k+m unless the polynomial hierarchy collapses.Comment: An extended abstract appears in the proceedings of IPEC 201

    Knockdown of Cytosolic Glutaredoxin 1 Leads to Loss of Mitochondrial Membrane Potential: Implication in Neurodegenerative Diseases

    Get PDF
    Mitochondrial dysfunction including that caused by oxidative stress has been implicated in the pathogenesis of neurodegenerative diseases. Glutaredoxin 1 (Grx1), a cytosolic thiol disulfide oxido-reductase, reduces glutathionylated proteins to protein thiols and helps maintain redox status of proteins during oxidative stress. Grx1 downregulation aggravates mitochondrial dysfunction in animal models of neurodegenerative diseases, such as Parkinson's and motor neuron disease. We examined the mechanism underlying the regulation of mitochondrial function by Grx1. Downregulation of Grx1 by shRNA results in loss of mitochondrial membrane potential (MMP), which is prevented by the thiol antioxidant, α-lipoic acid, or by cyclosporine A, an inhibitor of mitochondrial permeability transition. The thiol groups of voltage dependent anion channel (VDAC), an outer membrane protein in mitochondria but not adenosine nucleotide translocase (ANT), an inner membrane protein, are oxidized when Grx1 is downregulated. We then examined the effect of β-N-oxalyl amino-L-alanine (L-BOAA), an excitatory amino acid implicated in neurolathyrism (a type of motor neuron disease), that causes mitochondrial dysfunction. Exposure of cells to L-BOAA resulted in loss of MMP, which was prevented by overexpression of Grx1. Grx1 expression is regulated by estrogen in the CNS and treatment of SH-SY5Y cells with estrogen upregulated Grx1 and protected from L-BOAA mediated MMP loss. Our studies demonstrate that Grx1, a cytosolic oxido-reductase, helps maintain mitochondrial integrity and prevents MMP loss caused by oxidative insult. Further, downregulation of Grx1 leads to mitochondrial dysfunction through oxidative modification of the outer membrane protein, VDAC, providing support for the critical role of Grx1 in maintenance of MMP

    Genome-Wide Tissue-Specific Occupancy of the Hox Protein Ultrabithorax and Hox Cofactor Homothorax in Drosophila

    Get PDF
    The Hox genes are responsible for generating morphological diversity along the anterior-posterior axis during animal development. The Drosophila Hox gene Ultrabithorax (Ubx), for example, is required for specifying the identity of the third thoracic (T3) segment of the adult, which includes the dorsal haltere, an appendage required for flight, and the ventral T3 leg. Ubx mutants show homeotic transformations of the T3 leg towards the identity of the T2 leg and the haltere towards the wing. All Hox genes, including Ubx, encode homeodomain containing transcription factors, raising the question of what target genes Ubx regulates to generate these adult structures. To address this question, we carried out whole genome ChIP-chip studies to identify all of the Ubx bound regions in the haltere and T3 leg imaginal discs, which are the precursors to these adult structures. In addition, we used ChIP-chip to identify the sites bound by the Hox cofactor, Homothorax (Hth). In contrast to previous ChIP-chip studies carried out in Drosophila embryos, these binding studies reveal that there is a remarkable amount of tissue- and transcription factor-specific binding. Analyses of the putative target genes bound and regulated by these factors suggest that Ubx regulates many downstream transcription factors and developmental pathways in the haltere and T3 leg. Finally, we discovered additional DNA sequence motifs that in some cases are specific for individual data sets, arguing that Ubx and/or Hth work together with many regionally expressed transcription factors to execute their functions. Together, these data provide the first whole-genome analysis of the binding sites and target genes regulated by Ubx to specify the morphologies of the adult T3 segment of the fly

    The mental health burden of racial and ethnic minorities during the COVID-19 pandemic

    Get PDF
    Racial/ethnic minorities have been disproportionately impacted by COVID-19. The effects of COVID-19 on the long-term mental health of minorities remains unclear. To evaluate differences in odds of screening positive for depression and anxiety among various racial and ethnic groups during the latter phase of the COVID-19 pandemic, we performed a crosssectional analysis of 691,473 participants nested within the prospective smartphone-based COVID Symptom Study in the United States (U.S.) and United Kingdom (U.K). from February 23, 2021 to June 9, 2021. In the U.S. (n=57,187), compared to White participants, the multivariable odds ratios (ORs) for screening positive for depression were 1 16 (95% CI: 1 02 to 1 31) for Black, 1 23 (1 11 to 1 36) for Hispanic, and 1 15 (1 02 to 1 30) for Asian participants, and 1 34 (1 13 to 1 59) for participants reporting more than one race/other even after accounting for personal factors such as prior history of a mental health disorder, COVID-19 infection status, and surrounding lockdown stringency. Rates of screening positive for anxiety were comparable. In the U.K. (n=643,286), racial/ethnic minorities had similarly elevated rates of positive screening for depression and anxiety. These disparities were not fully explained by changes in leisure time activities. Racial/ethnic minorities bore a disproportionate mental health burden during the COVID-19 pandemic. These differences will need to be considered as health care systems transition from prioritizing infection control to mitigating long-term consequences

    SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stromal cell-derived factor-1 (SDF1) and its major signaling receptor, CXCR4, were initially described in the immune system; however, they are also expressed in the nervous system, including the spinal cord. After spinal cord injury, the blood brain barrier is compromised, opening the way for chemokine signaling between these two systems. These experiments clarified prior contradictory findings on normal expression of SDF1 and CXCR4 as well as examined the resulting spinal cord responses resulting from this signaling.</p> <p>Methods</p> <p>These experiments examined the expression and function of SDF1 and CXCR4 in the normal and injured adult mouse spinal cord primarily using CXCR4-EGFP and SDF1-EGFP transgenic reporter mice.</p> <p>Results</p> <p>In the uninjured spinal cord, SDF1 was expressed in the dorsal corticospinal tract (dCST) as well as the meninges, whereas CXCR4 was found only in ependymal cells surrounding the central canal. After spinal cord injury (SCI), the pattern of SDF1 expression did not change rostral to the lesion but it disappeared from the degenerating dCST caudally. By contrast, CXCR4 expression changed dramatically after SCI. In addition to the CXCR4+ cells in the ependymal layer, numerous CXCR4+ cells appeared in the peripheral white matter and in the dorsal white matter localized between the dorsal corticospinal tract and the gray matter rostral to the lesion site. The non-ependymal CXCR4+ cells were found to be NG2+ and CD11b+ macrophages that presumably infiltrated through the broken blood-brain barrier. One population of macrophages appeared to be migrating towards the dCST that contains SDF1 rostral to the injury but not towards the caudal dCST in which SDF1 is no longer present. A second population of the CXCR4+ macrophages was present near the SDF1-expressing meningeal cells.</p> <p>Conclusions</p> <p>These observations suggest that attraction of CXCR4+ macrophages is part of a programmed response to injury and that modulation of the SDF1 signaling system may be important for regulating the inflammatory response after SCI.</p

    Genetic structure of Plasmodium falciparum field isolates in eastern and north-eastern India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular techniques have facilitated the studies on genetic diversity of <it>Plasmodium </it>species particularly from field isolates collected directly from patients. The <it>msp-1 </it>and <it>msp-2 </it>are highly polymorphic markers and the large allelic polymorphism has been reported in the block 2 of the <it>msp-1 </it>gene and the central repetitive domain (block3) of the <it>msp-2 </it>gene. Families differing in nucleotide sequences and in number of repetitive sequences (length variation) were used for genotyping purposes. As limited reports are available on the genetic diversity existing among <it>Plasmodium falciparum </it>population of India, this report evaluates the extent of genetic diversity in the field isolates of <it>P. falciparum </it>in eastern and north-eastern regions of India.</p> <p>Methods</p> <p>A study was designed to assess the diversity of <it>msp-1 </it>and <it>msp-2 </it>among the field isolates from India using allele specific nested PCR assays and sequence analysis. Field isolates were collected from five sites distributed in three states namely, Assam, West Bengal and Orissa.</p> <p>Results</p> <p><it>P. falciparum </it>isolates of the study sites are highly diverse in respect of length as well as sequence motifs with prevalence of all the reported allelic families of <it>msp-1 </it>and <it>msp-2</it>. Prevalence of identical allelic composition as well as high level of sequence identity of alleles suggest a considerable amount of gene flow between the <it>P. falciparum </it>populations of different states. A comparatively higher proportion of multiclonal isolates as well as multiplicity of infection (MOI) was observed among isolates of highly malarious districts Karbi Anglong (Assam) and Sundergarh (Orissa). In all the five sites, R033 family of <it>msp-1 </it>was observed to be monomorphic with an allele size of 150/160 bp. The observed 80–90% sequence identity of Indian isolates with data of other regions suggests that Indian <it>P. falciparum </it>population is a mixture of different strains.</p> <p>Conclusion</p> <p>The present study shows that the field isolates of eastern and north-eastern regions of India are highly diverse in respect of <it>msp-1 </it>(block 2) and <it>msp-2 </it>(central repeat region, block 3). As expected Indian isolates present a picture of diversity closer to southeast Asia, Papua New Guinea and Latin American countries, regions with low to meso-endemicity of malaria in comparison to African regions of hyper- to holo-endemicity.</p
    corecore