1,170 research outputs found
Coupled superconductors and beyond
This paper describes the events leading to the discovery of coupled
superconductors, the author's move in the 1970s to a perspective where mind
plays a role comparable to matter, and the remarkable hostility sometimes
encountered by those who venture into unconventional areas.Comment: Invited paper for special issue of Low Temperature Physics/Fizika
Nizkikh Temperatur devoted to "Quantum Coherent Effects in Superconductors
and New Materials". 6pp. v5: open-access published versio
The Predicted RNA-Binding Protein ETR-1/CELF1 Acts in Muscles To Regulate Neuroblast Migration in Caenorhabditis elegans
This work is licensed under a Creative Commons Attribution 4.0 International License.Neuroblast migration is a critical aspect of nervous system development (e.g., neural crest migration). In an unbiased forward genetic screen, we identified a novel player in neuroblast migration, the ETR-1/CELF1 RNA binding protein. CELF1 RNA binding proteins are involved in multiple aspects of RNA processing including alternative splicing, stability, and translation. We find that a specific mutation in alternatively-spliced exon 8 results in migration defects of the AQR and PQR neurons, and not the embryonic lethality and body wall muscle defects of complete knockdown of the locus. Surprisingly, ETR-1 was required in body wall muscle cells for AQR/PQR migration (i.e., it acts cell non-autonomously). Genetic interactions indicate that ETR-1 acts with Wnt signaling, either in the Wnt pathway or in a parallel pathway. Possibly, ETR-1 is involved in the production of a Wnt signal or a parallel signal by the body wall muscles that controls AQR and PQR neuronal migration. In humans, CELF1 is involved in a number of neuromuscular disorders. If the role of ETR-1/CELF1 is conserved, these disorders might also involve cell or neuronal migration. Finally, we describe a technique of amplicon sequencing to detect rare, cell-specific genome edits by CRISPR/Cas9 in vivo (CRISPR-seq) as an alternative to the T7E1 assay.NIH P40 OD010440National Institute of General Medical Sciences (P20GM103638)Madison and Lila Self Graduate Fellowship progra
The Josephson effect throughout the BCS-BEC crossover
We study the stationary Josephson effect for neutral fermions across the
BCS-BEC crossover, by solving numerically the Bogoliubov-de Gennes equations at
zero temperature. The Josephson current is found to be considerably enhanced
for all barriers at about unitarity. For vanishing barrier, the Josephson
critical current approaches the Landau limiting value which, depending on the
coupling, is determined by either pair-breaking or sound-mode excitations. In
the coupling range from the BCS limit to unitarity, a procedure is proposed to
extract the pairing gap from the Landau limiting current.Comment: 4 pages, 3 figures; improved version to appear in Phys. Rev. Let
Experimental Designs for Binary Data in Switching Measurements on Superconducting Josephson Junctions
We study the optimal design of switching measurements of small Josephson
junction circuits which operate in the macroscopic quantum tunnelling regime.
Starting from the D-optimality criterion we derive the optimal design for the
estimation of the unknown parameters of the underlying Gumbel type
distribution. As a practical method for the measurements, we propose a
sequential design that combines heuristic search for initial estimates and
maximum likelihood estimation. The presented design has immediate applications
in the area of superconducting electronics implying faster data acquisition.
The presented experimental results confirm the usefulness of the method. KEY
WORDS: optimal design, D-optimality, logistic regression, complementary log-log
link, quantum physics, escape measurement
Mean Field Theory of Josephson Junction Arrays with Charge Frustration
Using the path integral approach, we provide an explicit derivation of the
equation for the phase boundary for quantum Josephson junction arrays with
offset charges and non-diagonal capacitance matrix. For the model with nearest
neighbor capacitance matrix and uniform offset charge , we determine,
in the low critical temperature expansion, the most relevant contributions to
the equation for the phase boundary. We explicitly construct the charge
distributions on the lattice corresponding to the lowest energies. We find a
reentrant behavior even with a short ranged interaction. A merit of the path
integral approach is that it allows to provide an elegant derivation of the
Ginzburg-Landau free energy for a general model with charge frustration and
non-diagonal capacitance matrix. The partition function factorizes as a product
of a topological term, depending only on a set of integers, and a
non-topological one, which is explicitly evaluated.Comment: LaTex, 24 pages, 8 figure
Synchronization of active mechanical oscillators by an inertial load
Motivated by the operation of myogenic (self-oscillatory) insect flight
muscle, we study a model consisting of a large number of identical oscillatory
contractile elements joined in a chain, whose end is attached to a damped
mass-spring oscillator. When the inertial load is small, the serial coupling
favors an antisynchronous state in which the extension of one oscillator is
compensated by the contraction of another, in order to preserve the total
length. However, a sufficiently massive load can sychronize the oscillators and
can even induce oscillation in situations where isolated elements would be
stable. The system has a complex phase diagram displaying quiescent,
synchronous and antisynchrononous phases, as well as an unsual asynchronous
phase in which the total length of the chain oscillates at a different
frequency from the individual active elements.Comment: 5 pages, 4 figures, To appear in Phys. Rev. Let
Universal Magnetic Properties of at Intermediate Temperatures
We present the theory of two-dimensional, clean quantum antiferromagnets with
a small, positive, zero temperature () stiffness , but with the
ratio arbitrary. Universal scaling forms for the uniform
susceptibility (), correlation length(), and NMR relaxation rate
() are proposed and computed in a expansion and by Mont\'{e}-Carlo
simulations. For large , and asymptote
to universal values, while is nearly -independent. We find good
quantitative agreement with experiments and some numerical studies on
.Comment: 14 pages, REVTEX, 1 postscript figure appende
Response of thin-film SQUIDs to applied fields and vortex fields: Linear SQUIDs
In this paper we analyze the properties of a dc SQUID when the London
penetration depth \lambda is larger than the superconducting film thickness d.
We present equations that govern the static behavior for arbitrary values of
\Lambda = \lambda^2/d relative to the linear dimensions of the SQUID. The
SQUID's critical current I_c depends upon the effective flux \Phi, the magnetic
flux through a contour surrounding the central hole plus a term proportional to
the line integral of the current density around this contour. While it is well
known that the SQUID inductance depends upon \Lambda, we show here that the
focusing of magnetic flux from applied fields and vortex-generated fields into
the central hole of the SQUID also depends upon \Lambda. We apply this
formalism to the simplest case of a linear SQUID of width 2w, consisting of a
coplanar pair of long superconducting strips of separation 2a, connected by two
small Josephson junctions to a superconducting current-input lead at one end
and by a superconducting lead at the other end. The central region of this
SQUID shares many properties with a superconducting coplanar stripline. We
calculate magnetic-field and current-density profiles, the inductance
(including both geometric and kinetic inductances), magnetic moments, and the
effective area as a function of \Lambda/w and a/w.Comment: 18 pages, 20 figures, revised for Phys. Rev. B, the main revisions
being to denote the effective flux by \Phi rather than
Pion Propagation near the QCD Chiral Phase Transition
We point out that, in analogy with spin waves in antiferromagnets, all
parameters describing the real-time propagation of soft pions at temperatures
below the QCD chiral phase transition can be expressed in terms of static
correlators. This allows, in principle, the determination of the soft pion
dispersion relation on the lattice. Using scaling and universality arguments,
we determine the critical behavior of the parameters of pion propagation. We
predict that when the critical temperature is approached from below, the pole
mass of the pion drops despite the growth of the pion screening mass. This fact
is attributed to the decrease of the pion velocity near the phase transition.Comment: 8 pages (single column), RevTeX; added references, version to be
published in PR
Voltage rectification by a SQUID ratchet
We argue that the phase across an asymmetric dc SQUID threaded by a magnetic
flux can experience an effective ratchet (periodic and asymmetric) potential.
Under an external ac current, a rocking ratchet mechanism operates whereby one
sign of the time derivative of the phase is favored. We show that there exists
a range of parameters in which a fixed sign (and, in a narrower range, even a
fixed value) of the average voltage across the ring occurs, regardless of the
sign of the external current dc component.Comment: 4 pages, 4 EPS figures, uses psfig.sty. Revised version, to appear in
Physical Review Letters (26 August 1996
- …