24 research outputs found

    1,2-H- versus 1,2-C-Shift on Sn-Silsesquioxanes

    Get PDF
    Lewis acidic zeolites such as Sn-Beta catalyze glucose isomerization to fructose via an intramolecular 1,2-H-shift reaction, a key step for converting lignocellulosic biomass into renewable chemicals. Na-exchange of Sn-Beta titrates the neighboring SiOH group in the open Sn site and shifts catalyst selectivity to mannose formed by a 1,2-C-shift reaction. To probe structure/activity relationships in the zeolite, tin-containing silsesquioxanes with (1a) and without (1b) a neighboring SiOH group were recently synthesized and tested. These molecular catalysts are active for glucose conversion, and the presence (absence) of the SiOH favors fructose (mannose) selectivity by intramolecular H(C)-shift reactions. Using density functional theory, we investigated numerous H/C-shift pathways on these tin-silsesquioxane catalysts. On both 1a and 1b, the H-shift reaction occurs through a bidentate binding mode without participation of the SiOH, while the bidentate binding mode is not favored for the C-shift due to steric hindrance. Instead, the C-shift reaction occurs through different concerted reaction pathways, in which an acetylacetonate (acac) ligand interacts with the substrate in the transition state complexes. Favorable H-shift pathways without SiOH participation and acac ligand promotion of the C-shift pathway explain why 1a produces mannose from C-shift reactions instead of exclusively catalyzing H-shift reactions, as the Sn-Beta open site does

    Formalizing Chemical Physics using the Lean Theorem Prover

    Full text link
    Chemical theory can be made more rigorous using the Lean theorem prover, an interactive theorem prover for complex mathematics. We formalize the Langmuir and BET theories of adsorption, making each scientific premise clear and every step of the derivations explicit. Lean's math library, mathlib, provides formally verified theorems for infinite geometries series, which are central to BET theory. While writing these proofs, Lean prompts us to include mathematical constraints that were not originally reported. We also illustrate how Lean flexibly enables the reuse of proofs that build on more complex theories through the use of functions, definitions, and structures. Finally, we construct scientific frameworks for interoperable proofs, by creating structures for classical thermodynamics and kinematics, using them to formalize gas law relationships like Boyle's Law and equations of motion underlying Newtonian mechanics, respectively. This approach can be extended to other fields, enabling the formalization of rich and complex theories in science and engineering

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Spontaneous Pneumothorax in an Elderly Patient With Coronavirus Disease (COVID-19) Pneumonia

    No full text
    Background: The relationship between the 2019 novel coronavirus (COVID-19) and pneumothorax is not yet established. As of June 2020, few cases of nonintubated patients developing pneumothorax had been documented. Case Report: We present the case of an elderly patient with COVID-19 pneumonia that resulted in a prolonged hospital course because of pneumothorax complication. The patient did not develop severe symptoms and did not require intubation. Conclusion: This case report should aid clinicians assessing patients with COVID-19 pneumonia

    Methyl-ligated tin silsesquioxane catalyzed reactions of glucose

    No full text
    Tin-containing zeolite Beta (Sn-Beta) has been investigated as a catalyst for isomerizing aldohexoses into ketohexoses through a Lewis acid mediated hydride shift. Recent studies on the reactivities of Lewis base-doped and alkali-exchanged Sn-Beta samples have conclusively demonstrated that the “open” tin site performs the glucose isomerization reaction. With Lewis base doped Sn-Beta, glucose conversion is almost completely eliminated and product selectivity is shifted predominantly to mannose. These data suggest that glucose reactions may occur through pathways that do not involve the “open” site in Sn-Beta; albeit at significantly lower rates. To examine this possibility, reactions of glucose catalyzed by a homogeneous model of Sn-Beta that does not contain “open” sites, methyl-ligated tin silsesquioxane 1a, is experimentally and theoretically examined. 1a is an active glucose conversion catalyst selectively producing mannose, although the rates of reaction are far below those obtained from Sn-Beta. A hybrid quantum mechanical/molecular mechanics model is constructed, and the complete catalytic cycle is computationally examined, considering ring-opening, three distinct pathways for each hydride- and carbon-shift reaction, and ring-closing. The combined experimental and computational results suggest that there could be reaction pathways that involve Si–O–Sn cleavage that give much slower reaction rates than the open tin site in Sn-Beta

    Methyl-ligated tin silsesquioxane catalyzed reactions of glucose

    No full text
    Tin-containing zeolite Beta (Sn-Beta) has been investigated as a catalyst for isomerizing aldohexoses into ketohexoses through a Lewis acid mediated hydride shift. Recent studies on the reactivities of Lewis base-doped and alkali-exchanged Sn-Beta samples have conclusively demonstrated that the “open” tin site performs the glucose isomerization reaction. With Lewis base doped Sn-Beta, glucose conversion is almost completely eliminated and product selectivity is shifted predominantly to mannose. These data suggest that glucose reactions may occur through pathways that do not involve the “open” site in Sn-Beta; albeit at significantly lower rates. To examine this possibility, reactions of glucose catalyzed by a homogeneous model of Sn-Beta that does not contain “open” sites, methyl-ligated tin silsesquioxane 1a, is experimentally and theoretically examined. 1a is an active glucose conversion catalyst selectively producing mannose, although the rates of reaction are far below those obtained from Sn-Beta. A hybrid quantum mechanical/molecular mechanics model is constructed, and the complete catalytic cycle is computationally examined, considering ring-opening, three distinct pathways for each hydride- and carbon-shift reaction, and ring-closing. The combined experimental and computational results suggest that there could be reaction pathways that involve Si–O–Sn cleavage that give much slower reaction rates than the open tin site in Sn-Beta

    Multiple linear regression and thermodynamic fluctuations are equivalent for computing thermodynamic derivatives from molecular simulation

    Get PDF
    Partial molar properties are of fundamental importance for understanding properties of non-ideal mixtures. Josephson and co-workers (Mol. Phys. 2019, 117, 3589–3602) used least squares multiple linear regression to obtain partial molar properties in open constant-pressure ensembles. Assuming composition-independent partial molar properties for the narrow composition range encountered throughout simulation trajectories, we rigorously prove the equivalence of two approaches for computing thermodynamic derivatives in open ensembles of an n-component system: (1) multiple linear regression, and (2) thermodynamic fluctuations. Multiple linear regression provides a conceptually simple and computationally efficient way of computing thermodynamic derivatives for multicomponent systems. We show that in the reaction ensemble, the reaction enthalpy can be computed directly by simple multiple linear regression of the enthalpy as a function of the number of reactant molecules. Non-linear regression and a Gaussian process model taking into account the compositional dependence of partial molar properties further support that multiple linear regression captures the correct physics.Engineering Thermodynamic
    corecore