25 research outputs found

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    Circadian-Related Sleep Disorders and Sleep Medication Use in the New Zealand Blind Population: An Observational Prevalence Survey

    Get PDF
    STUDY OBJECTIVES: To determine the prevalence of self-reported circadian-related sleep disorders, sleep medication and melatonin use in the New Zealand blind population. DESIGN: A telephone survey incorporating 62 questions on sleep habits and medication together with validated questionnaires on sleep quality, chronotype and seasonality. PARTICIPANTS: PARTICIPANTS WERE GROUPED INTO: (i) 157 with reduced conscious perception of light (RLP); (ii) 156 visually impaired with no reduction in light perception (LP) matched for age, sex and socioeconomic status, and (iii) 156 matched fully-sighted controls (FS). SLEEP HABITS AND DISTURBANCES: The incidence of sleep disorders, daytime somnolence, insomnia and sleep timing problems was significantly higher in RLP and LP compared to the FS controls (p<0.001). The RLP group had the highest incidence (55%) of sleep timing problems, and 26% showed drifting sleep patterns (vs. 4% FS). Odds ratios for unconventional sleep timing were 2.41 (RLP) and 1.63 (LP) compared to FS controls. For drifting sleep patterns, they were 7.3 (RLP) and 6.0 (LP). MEDICATION USE: Zopiclone was the most frequently prescribed sleep medication. Melatonin was used by only 4% in the RLP group and 2% in the LP group. CONCLUSIONS: Extrapolations from the current study suggest that 3,000 blind and visually impaired New Zealanders may suffer from circadian-related sleep problems, and that of these, fewer than 15% have been prescribed melatonin. This may represent a therapeutic gap in the treatment of circadian-related sleep disorders in New Zealand, findings that may generalize to other countries

    Type 1 Autoimmune Pancreatitis in Europe: Clinical Profile and Response to Treatment.

    Get PDF
    Background and aimsAutoimmune pancreatitis (AIP) is an immune-mediated disease of the pancreas with distinct pathophysiology and manifestations. Our aims were to characterize type 1 AIP in a large pan-European cohort and study the effectiveness of current treatment regimens.MethodsWe retrospectively analyzed adults diagnosed since 2005 with type 1 or not-otherwise-specified AIP in 42 European university hospitals. Type 1 AIP was uniformly diagnosed using specific diagnostic criteria. Patients with type 2 AIP and those who had undergone pancreatic surgery were excluded. The primary endpoint was complete remission, defined as the absence of clinical symptoms and resolution of the index radiological pancreatic abnormalities attributed to AIP.ResultsWe included 735 individuals with AIP (69% male; median age 57 years; 85% White). Steroid treatment was started in 634 patients, of whom 9 (1%) were lost to follow-up. The remaining 625 had a 79% (496/625) complete, 18% (111/625) partial, and 97% (607/625) cumulative remission rate, while 3% (18/625) did not achieve remission. No treatment was given in 95 patients, who had a 61% complete (58/95), 19% partial (18/95), and 80% cumulative (76/95) spontaneous remission rate. Higher (≥0.4 mg/kg/day) corticosteroid doses were no more effective than lower ( 2 weeks (OR 0.908; 95%CI 0.818-1.009). Elevated IgG4 levels were independently associated with a decreased chance of complete remission (OR 0.639; 95%CI 0.427-0.955). Relapse occurred in 30% of patients. Relapses within 6 months of remission induction were independent of the steroid tapering duration, induction treatment duration, and total cumulative dose.ConclusionPatients with type 1 AIP and elevated IgG4 level may need closer monitoring. For remission induction, a starting dose of 0.4 mg/kg/day for 2 weeks followed by a short taper period seems effective. This study provides no evidence to support more aggressive regimens

    Transcriptional Regulation of the Beta-Synuclein 5′-Promoter Metal Response Element by Metal Transcription Factor-1

    Get PDF
    The progression of many human neurodegenerative disorders is associated with an accumulation of alpha-synuclein. Alpha-synuclein belongs to the homologous synuclein family, which includes beta-synuclein. It has been proposed that beta-synuclein may be a natural regulator of alpha-synuclein. Therefore controlling beta-synuclein expression may control the accumulation of alpha-synuclein and ultimately prevent disease progression. The regulation of synucleins is poorly understood. We investigated the transcriptional regulation of beta-synuclein, with the aim of identifying molecules that differentially control beta-synuclein expression levels. To investigate transcriptional regulation of beta-synuclein, we used reporter gene assays and bioinformatics. We identified a region −1.1/−0.6 kb upstream of the beta-synuclein translational start site to be a key regulatory region of beta-synuclein 5′-promoter activity in human dopaminergic cells (SH-SY5Y). Within this key promoter region we identified a metal response element pertaining to a putative Metal Transcription Factor-1 (MTF-1) binding site. We demonstrated that MTF-1 binds to this 5′-promoter region using EMSA analysis. Moreover, we showed that MTF-1 differentially regulates beta-synuclein promoter binding site, as well as beta-synuclein mRNA and protein expression. This effect of MTF-1 on expression was found to be specific to beta-synuclein when compared to alpha-synuclein. Understanding the regulation of synucleins and how they interact may point to molecular targets that could be manipulated for therapeutic benefit. In this study we showed that MTF-1 differentially controls the expression of beta-synuclein when compared to its homolog alpha-synuclein. This could potentially provide a novel targets or pathways for therapeutic intervention and/or treatment of synucleinopathies

    Effector target-guided engineering of an integrated domain expands the disease resistance profile of a rice NLR immune receptor

    No full text
    A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector’s host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops

    Automated template-based hippocampal segmentations from MRI: the effects of 1.5T or 3T field strength on accuracy.

    Get PDF
    Hippocampal volumetric measures may be useful for Alzheimer's disease (AD) diagnosis and disease tracking; however, manual segmentation of the hippocampus is labour-intensive. Therefore, automated techniques are necessary for large studies and to make hippocampal measures feasible for clinical use. As large studies and clinical centres are moving from using 1.5 Tesla (T) scanners to higher field strengths it is important to assess whether specific image processing techniques can be used at these field strengths. This study investigated whether an automated hippocampal segmentation technique (HMAPS: hippocampal multi-atlas propagation and segmentation) and volume change measures (BSI: boundary shift integral) were as accurate at 3T as at 1.5T. Eighteen Alzheimer's disease patients and 18 controls with 1.5T and 3T scans at baseline and 12-month follow-up were used from the Alzheimer's Disease Neuroimaging Initiative cohort. Baseline scans were segmented manually and using HMAPS and their similarity was measured by the Jaccard index. BSIs were calculated for serial image pairs. We calculated pair-wise differences between manual and HMAPS rates at 1.5T and 3T and compared the SD of these differences at each field strength. The difference in mean Jaccards (manual and HMAPS) between 1.5T and 3T was small with narrow confidence intervals (CIs) and did not appear to be segmentor dependent. The SDs of the difference between volumes from manual and automated segmentations were similar at 1.5T and 3T, with a relatively narrow CI for their ratios. The SDs of the difference between BSIs from manual and automated segmentations were also similar at 1.5T and 3T but with a wider CI for their ratios. This study supports the use of our automated hippocampal voluming methods, developed using 1.5T images, with 3T images
    corecore