243 research outputs found
Neutrophil elastase, an acid-independent serine protease, facilitates reovirus uncoating and infection in U937 promonocyte cells
BACKGROUND: Mammalian reoviruses naturally infect their hosts through the enteric and respiratory tracts. During enteric infections, proteolysis of the reovirus outer capsid protein σ3 is mediated by pancreatic serine proteases. In contrast, the proteases critical for reovirus replication in the lung are unknown. Neutrophil elastase (NE) is an acid-independent, inflammatory serine protease predominantly expressed by neutrophils. In addition to its normal role in microbial defense, aberrant expression of NE has been implicated in the pathology of acute respiratory distress syndrome (ARDS). Because reovirus replication in rodent lungs causes ARDS-like symptoms and induces an infiltration of neutrophils, we investigated the capacity of NE to promote reovirus virion uncoating. RESULTS: The human promonocyte cell line U937 expresses NE. Treatment of U937 cells with the broad-spectrum cysteine-protease inhibitor E64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane] and with agents that increase vesicular pH did not inhibit reovirus replication. Even when these inhibitors were used in combination, reovirus replicated to significant yields, indicating that an acid-independent non-cysteine protease was capable of mediating reovirus uncoating in U937 cell cultures. To identify the protease(s) responsible, U937 cells were treated with phorbol 12-myristate 13-acetate (PMA), an agent that induces cellular differentiation and results in decreased expression of acid-independent serine proteases, including NE and cathepsin (Cat) G. In the presence of E64, reovirus did not replicate efficiently in PMA-treated cells. To directly assess the role of NE in reovirus infection of U937 cells, we examined viral growth in the presence of N-Ala-Ala-Pro-Val chloromethylketone, a NE-specific inhibitor. Reovirus replication in the presence of E64 was significantly reduced by treatment of cells with the NE inhibitor. Incubation of virions with purified NE resulted in the generation of infectious subviron particles that did not require additional intracellular proteolysis. CONCLUSION: Our findings reveal that NE can facilitate reovirus infection. The fact that it does so in the presence of agents that raise vesicular pH supports a model in which the requirement for acidic pH during infection reflects the conditions required for optimal protease activity. The capacity of reovirus to exploit NE may impact viral replication in the lung and other tissues during natural infections
Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease
<p>Abstract</p> <p>Background</p> <p>Previously we demonstrated that DNA vaccination of nonhuman primates (NHP) with a small subset of vaccinia virus (VACV) immunogens (L1, A27, A33, B5) protects against lethal monkeypox virus challenge. The L1 and A27 components of this vaccine target the mature virion (MV) whereas A33 and B5 target the enveloped virion (EV).</p> <p>Results</p> <p>Here, we demonstrated that the antibodies produced in vaccinated NHPs were sufficient to confer protection in a murine model of lethal <it>Orthopoxvirus </it>infection. We further explored the concept of using DNA vaccine technology to produce immunogen-specific polyclonal antibodies that could then be combined into cocktails as potential immunoprophylactic/therapeutics. Specifically, we used DNA vaccines delivered by muscle electroporation to produce polyclonal antibodies against the L1, A27, A33, and B5 in New Zealand white rabbits. The polyclonal antibodies neutralized both MV and EV in cell culture. The ability of antibody cocktails consisting of anti-MV, anti-EV, or a combination of anti-MV/EV to protect BALB/c mice was evaluated as was the efficacy of the anti-MV/EV mixture in a mouse model of progressive vaccinia. In addition to evaluating weight loss and lethality, bioimaging technology was used to characterize the spread of the VACV infections in mice. We found that the anti-EV cocktail, but not the anti-MV cocktail, limited virus spread and lethality.</p> <p>Conclusions</p> <p>A combination of anti-MV/EV antibodies was significantly more protective than anti-EV antibodies alone. These data suggest that DNA vaccine technology could be used to produce a polyclonal antibody cocktail as a possible product to replace vaccinia immune globulin.</p
Recommended from our members
Expression of Heterologous OsDHAR Gene Improves Glutathione (GSH)-Dependent Antioxidant System and Maintenance of Cellular Redox Status in Synechococcus elongatus PCC 7942.
An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic Synechococcus elongatus PCC 7942 (TA) was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the cyanobacterium to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type S. elongatus PCC 7942 (WT). Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress
Non-invasive fractional flow reserve (FFRCT) in the evaluation of acute chest pain ? Concepts and first experiences
Objective: To evaluate 30 day rate of major adverse cardiac events (MACE) utilizing cCTA and FFRCT for evaluation of patients presenting to the Emergency Department (ED) with acute chest pain. Materials and methods: Patients between the ages of 18?95 years who underwent clinically indicated cCTA and FFRCT in the evaluation of acute chest pain in the emergency department were retrospectively evaluated for 30 day MACE, repeat presentation/admission for chest pain, revascularization, and additional testing. Results: A total of 59 patients underwent CCTA and subsequent FFRCT for the evaluation of acute chest pain in the ED over the enrollment period. 32 out of 59 patients (54 %) had negative FFRCT (>0.80) out of whom 18 patients (55 %) were discharged from the ED. Out of the 32 patients without functionally significant CAD by FFRCT, 32 patients (100 %) underwent no revascularization and 32 patients (100 %) had no MACE at the 30-day follow-up period. Conclusion: In this limited retrospective study, patients presenting to the ED with acute chest pain and with CCTA with subsequent FFRCT of >0.8 had no MACE at 30 days; however, for many of these patients results were not available at time of clinical decision making by the ED physician
Modelling The Cancer Growth Process By Stochastic Delay Diffferential Equations Under Verhults And Gompertz's Law
In this paper, the uncontrolled environmental factors are perturbed into the intrinsic growth rate factor of deterministic equations of the growth process. The growth process under two different laws which are Verhults and Gompertz’s law are considered, thus leading to
stochastic delay differential equations (SDDEs) of logistic and Gompertzian, respectively. Gompertzian deterministic model has been proved to fit well the clinical data of cancerous growth, however the performance of stochastic model towards clinical data is yet to be confirmed. The prediction quality of logistic and Gompertzian SDDEs are evaluating by comparing the simulated results with the clinical data of cervical cancer growth. The parameter estimation of stochastic models is computed by using simulated maximum likelihood method. We adopt 4-stage stochastic Runge-Kutta to simulate the solution of stochastic models
ERK2 alone drives inflammatory pain but cooperates with ERK1 in sensory neuron survival
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are highly homologous yet distinct components of signal transduction pathways known to regulate cell survival and function. Recent evidence indicates an isoform-specific role for ERK2 in pain processing and peripheral sensitization. However, the function of ERK2 in primary sensory neurons has not been directly tested. To dissect the isoform-specific function of ERK2 in sensory neurons, we used mice with Cre-loxP-mediated deletion of ERK2 in Na(v)1.8(+) sensory neurons that are predominantly nociceptors. We find that ERK2, unlike ERK1, is required for peripheral sensitization and cold sensation. We also demonstrate that ERK2, but not ERK1, is required to preserve epidermal innervation in a subset of peptidergic neurons. Additionally, deletion of both ERK isoforms in Na(v)1.8(+) sensory neurons leads to neuron loss not observed with deletion of either isoform alone, demonstrating functional redundancy in the maintenance of sensory neuron survival. Thus, ERK1 and ERK2 exhibit both functionally distinct and redundant roles in sensory neurons. SIGNIFICANCE STATEMENT ERK1/2 signaling affects sensory neuron function and survival. However, it was not clear whether ERK isoform-specific roles exist in these processes postnatally. Previous work from our laboratory suggested either functional redundancy of ERK isoforms or a predominant role for ERK2 in pain; however, the tools to discriminate between these possibilities were not available at the time. In the present study, we use new genetic knock-out lines to demonstrate that ERK2 in sensory neurons is necessary for development of inflammatory pain and for postnatal maintenance of peptidergic epidermal innervation. Interestingly, postnatal loss of both ERK isoforms leads to a profound loss of sensory neurons. Therefore, ERK1 and ERK2 display both functionally distinct and redundant roles in sensory neurons
Deletion of parasite immune modulatory sequences combined with immune activating signals enhances vaccine mediated protection against filarial nematodes
<p>Background: Filarial nematodes are tissue-dwelling parasites that can be killed by Th2-driven immune effectors, but that have evolved to withstand immune attack and establish chronic infections by suppressing host immunity. As a consequence, the efficacy of a vaccine against filariasis may depend on its capacity to counter parasite-driven immunomodulation.</p>
<p>Methodology and Principal Findings: We immunised mice with DNA plasmids expressing functionally-inactivated forms of two immunomodulatory molecules expressed by the filarial parasite Litomosoides sigmodontis: the abundant larval transcript-1 (LsALT) and cysteine protease inhibitor-2 (LsCPI). The mutant proteins enhanced antibody and cytokine responses to live parasite challenge, and led to more leukocyte recruitment to the site of infection than their native forms. The immune response was further enhanced when the antigens were targeted to dendritic cells using a single chain Fv-αDEC205 antibody and co-administered with plasmids that enhance T helper 2 immunity (IL-4) and antigen-presenting cell recruitment (Flt3L, MIP-1α). Mice immunised simultaneously against the mutated forms of LsALT and LsCPI eliminated adult parasites faster and consistently reduced peripheral microfilaraemia. A multifactorial analysis of the immune response revealed that protection was strongly correlated with the production of parasite-specific IgG1 and with the numbers of leukocytes present at the site of infection.</p>
<p>Conclusions: We have developed a successful strategy for DNA vaccination against a nematode infection that specifically targets parasite-driven immunosuppression while simultaneously enhancing Th2 immune responses and parasite antigen presentation by dendritic cells.</p>
Consumer Bankruptcy Update
Materials from the Consumer Bankruptcy Update presentations held by UK/CLE in December 2000
- …