1,196 research outputs found

    Moral y Moral Cristiana

    Get PDF

    Compact personal distributed wearable exposimeter

    Get PDF
    A compact wearable personal distributed exposimeter (PDE) is proposed, sensing the power density of incident radio frequency (RF) fields on the body of a human. In contrast to current commercial exposimeters, our PDE, being composed of multiple compact personal wearable RF exposimeter sensor modules, minimizes uncertainties caused by the proximity of the body, the specific antenna used, and the exact position of the exposimeter. For unobtrusive deployment inside a jacket, each individual exposimeter sensor module is specifically implemented on the feedplane of a textile patch antenna. The new wearable sensor module's high-resolution logarithmic detector logs RF signal levels. Next, on-board flash memory records minimum, maximum, and average exposure data over a time span of more than two weeks, at a one-second sample period. Sample-level synchronization of each individual exposimeter sensor module enables combining of measurements collected by different nodes. The system is first calibrated in an anechoic chamber, and then compared with a commercially available single-unit exposimeter. Next, the PDE is validated in realistic conditions, by measuring the average RF power density on a human during a walk in an urban environment and comparing the results to spectrum analyzer measurements with a calibrated antenna

    On-body wearable repeater as a data link relay for in-body wireless implants

    Get PDF
    Wireless medical devices implanted at different locations in the human body have a wide application range. Yet, high-data-rate communication in the 2.4-GHz Industrial, Scientific, and Medical band suffers from high in-body attenuation loss. Link improvement cannot be obtained by simply increasing transmit power, as battery life is limited and in-body absorption has to remain low. To overcome these problems, a flexible on-body textile patch antenna, robustly matched directly to the human body, is designed and developed as part of a wearable repeater, enhancing communication with implanted wireless devices. This receive antenna, which can cope with different morphologies and patient movements, enables reliable high data rate and low-power communication links with an implant. A data link measurement is performed for the on-body repeater system placed on the human torso, relaying the signals to nearby medical equipment, without wired connection to the patient. The performance of the data link is experimentally assessed in different measurement scenarios. For a repeater system relying on simple analog amplification, which is low-cost, energy-efficient, and can be fully integrated into clothing, excellent results are obtained, with an average measured signal-to-noise ratio of 33 dB for tissue depths up to 85 mm

    Improved reception of in-body signals by means of a wearable multi-antenna system

    Get PDF
    High data-rate wireless communication for in-body human implants is mainly performed in the 402-405 MHz Medical Implant Communication System band and the 2.45 GHz Industrial, Scientific and Medical band. The latter band offers larger bandwidth, enabling high-resolution live video transmission. Although in-body signal attenuation is larger, at least 29 dB more power may be transmitted in this band and the antenna efficiency for compact antennas at 2.45 GHz is also up to 10 times higher. Moreover, at the receive side, one can exploit the large surface provided by a garment by deploying multiple compact highly efficient wearable antennas, capturing the signals transmitted by the implant directly at the body surface, yielding stronger signals and reducing interference. In this paper, we implement a reliable 3.5 Mbps wearable textile multi-antenna system suitable for integration into a jacket worn by a patient, and evaluate its potential to improve the In-to-Out Body wireless link reliability by means of spatial receive diversity in a standardized measurement setup. We derive the optimal distribution and the minimum number of on-body antennas required to ensure signal levels that are large enough for real-time wireless endoscopy-capsule applications, at varying positions and orientations of the implant in the human body

    Whole-body averaged specific absorption rate estimation using a personal, distributed exposimeter

    Get PDF
    For the first time, a body area network (BAN) is used to construct a personal, distributed exposimeter (PDE), which can measure the whole-body averaged specific absorption rate (SAR(wb)) in real life, together with the incident power density (S-inc). The BAN consists of four textile antennas with integrated radio frequency receiver nodes tuned to the Global System for Mobile Communications (GSM) 900 downlink band. Calibration measurements at 942.5 MHz, using a human subject, are performed in an anechoic chamber. These are combined with numerical simulations to estimate both SAR(wb) and S-inc from the averaged received power on the PDE. The PDE has 50% prediction intervals of 3 dB on S-inc and 3.3 dB on the SAR(wb), caused by the presence of the human body, whereas the best single textile antenna in our measurements exhibits PI50's of 7.1 dB on S-inc and 5 dB on SAR(wb). Measurements using the PDE are carried out in Ghent, Belgium, during which a median S-inc = 47 mu W/m(2) and SAR(wb) = 0.25 mu W/kg are measured

    A personal, distributed exposimeter: procedure for design, calibration, validation, and application

    Get PDF
    This paper describes, for the first time, the procedure for the full design, calibration, uncertainty analysis, and practical application of a personal, distributed exposimeter (PDE) for the detection of personal exposure in the Global System for Mobile Communications (GSM) downlink (DL) band around 900 MHz (GSM 900 DL). The PDE is a sensor that consists of several body-worn antennas. The on-body location of these antennas is investigated using numerical simulations and calibration measurements in an anechoic chamber. The calibration measurements and the simulations result in a design (or on-body setup) of the PDE. This is used for validation measurements and indoor radio frequency (RF) exposure measurements in Ghent, Belgium. The main achievements of this paper are: first, the demonstration, using both measurements and simulations, that a PDE consisting of multiple on-body textile antennas will have a lower measurement uncertainty for personal RF exposure than existing on-body sensors; second, a validation of the PDE, which proves that the device correctly estimates the incident power densities; and third, a demonstration of the usability of the PDE for real exposure assessment measurements. To this aim, the validated PDE is used for indoor measurements in a residential building in Ghent, Belgium, which yield an average incident power density of 0.018 mW/m(2)

    Novel wearable antenna systems for high datarate mobile communication in healthcare

    Get PDF
    In critical healthcare applications, there is a need for reliable wideband mobile communication links, implemented by portable units with sufficient autonomy. We present the latest generation wearable antenna systems for invisible and comfortable integration in patients' or caregivers' garments. These active textile modules boast excellent performance and reliability, thanks to innovative antenna topologies, leveraged by the application of substrate integrated waveguide technology, pervasive integration of electronics and energy harvesters, and the application of multi-antenna processing techniques. Applications range from mobile communication links between caregivers and a coordination centre during interventions, over wireless sensor systems for patient monitoring, to relaying videos streams between a wireless endoscopy capsule and a remote control station
    corecore