36 research outputs found

    Exposing an “Intangible” Cognitive Skill Among Collegiate Football Players: II. Enhanced Response Impulse Control

    Get PDF
    American football is played in a dynamic environment that places considerable demands on a player’s ability to make fast, precise reactions while controlling premature, impulsive reactions to spatial misinformation. We investigated the hypothesis that collegiate football players are more proficient than their non-athlete counterparts at controlling impulsive motor actions. National Collegiate Athletic Association (NCAA) Division I football players (n = 280) and non-athlete controls (n = 32) completed a variant of the Simon conflict task, which quantifies choice reaction speed and the proficiency of controlling spatially driven response impulses. Overall, the choice reaction times (RTs) and accuracy rates of football players and controls were equivalent. Similarly, football players and controls were equally susceptible to producing incorrect impulsive motor responses. However, the slowing of RT attributed to the activation and successful inhibition of these impulses (i.e., the Simon effect) was reduced significantly among football players compared to controls. Moreover, differences in impulse control varied by position among the players, with the reduction being greater for offensive than for defensive players. Among offensive players, running backs, wide receivers, and offensive linemen had greater impulse control than did controls, whereas among defensive players only linebackers had greater control. Notably, the Simon effect was reduced by 60% in running backs compared to controls. These results contribute to emerging evidence that elite football players possess more proficient executive control over their motor systems than their age counterparts and suggest that the speed of controlling impulsive motor reactions may represent an enhanced cognitive “intangible” among football players

    CranialVault and its CRAVE tools: A clinical computer assistance system for deep brain stimulation (DBS) therapy

    Full text link
    Teaching and learning astronomy is known to be both exciting and challenging. To learn astronomy demands not only disciplinary knowledge, but also the ability to discern meaning from disciplinary specific representations (disciplinary discernment). This includes the ability to think spatially, in particular, extrapolating three-dimensionality from a one- or two-dimensional input i.e. to be able to visualize in one’s mind how a three-dimensional astronomical object may look from a one- or two-dimensional input such as from a visual image or a mathematical representation. In this talk I demonstrate that these abilities are deeply intertwined, and that to learn astronomy at any level demands becoming fluent in all three aspects (disciplinary knowledge, disciplinary discernment and spatial thinking). A framework is presented for how these competencies can be described, and combined, as a new and innovative way to frame teaching and learning in astronomy. It is argued that using this framework “Reading the Sky” optimizes the learning outcomes for students. The talk also suggests strategies for how to implement this approach for improving astronomy teaching and learning overall

    Exercise-induced Nogo-A influences rodent motor learning in a time-dependent manner

    No full text
    The adult, mature central nervous system (CNS) has limited plasticity. Physical exercising can counteract this limitation by inducing plasticity and fostering processes such as learning, memory consolidation and formation. Little is known about the molecular factors that govern these mechanisms, and how they are connected with exercise. In this study, we used immunohistochemical and behavioral analyses to investigate how running wheel exercise affects expression of the neuronal plasticity-inhibiting protein Nogo-A in the rat cortex, and how it influences motor learning in vivo. Following one week of exercise, rats exhibited a decrease in Nogo-A levels, selectively in motor cortex layer 2/3, but not in layer 5. Nogo-A protein levels returned to baseline after two weeks of running wheel exercise. In a skilled motor task (forelimb-reaching), administration of Nogo-A function-blocking antibodies over the course of the first training week led to improved motor learning. By contrast, Nogo-A antibody application over two weeks of training resulted in impaired learning. Our findings imply a bimodal, time-dependent function of Nogo-A in exercise-induced neuronal plasticity: While an activity-induced suppression of the plasticity-inhibiting protein Nogo-A appears initially beneficial for enhanced motor learning, presumably by allowing greater plasticity in establishing novel synaptic connections, this process is not sustained throughout continued exercise. Instead, upregulation of Nogo-A over the course of the second week of running wheel exercise in rats implies that Nogo-A is required for consolidation of acquired motor skills during the delayed memory consolidation process, possibly by inhibiting ongoing neuronal morphological reorganization to stabilize established synaptic pathways. Our findings suggest that Nogo-A downregulation allows leaning to occur, i.e. opens a ‘learning window’, while its later upregulation stabilizes the learnt engrams. These findings underline the importance of appropriately timing of application of Nogo-A antibodies in future clinical trials that aim to foster memory performance while avoiding adverse effects.ISSN:1932-620

    Modelling the Impact of Robotics on Infectious Spread Among Healthcare Workers

    No full text
    The Coronavirus disease 2019 (Covid-19) pandemic has brought the world to a standstill. Healthcare systems are critical to maintain during pandemics, however, providing service to sick patients has posed a hazard to frontline healthcare workers (HCW) and particularly those caring for elderly patients. Various approaches are investigated to improve safety for HCW and patients. One promising avenue is the use of robots. Here, we model infectious spread based on real spatio-temporal precise personal interactions from a geriatric unit and test different scenarios of robotic integration. We find a significant mitigation of contamination rates when robots specifically replace a moderate fraction of high-risk healthcare workers, who have a high number of contacts with patients and other HCW. While the impact of robotic integration is significant across a range of reproductive number R0, the largest effect is seen when R0 is slightly above its critical value. Our analysis suggests that a moderate-sized robotic integration can represent an effective measure to significantly reduce the spread of pathogens with Covid-19 transmission characteristics in a small hospital unit.RV thanks the financial support from the Estonian Center of Excellence in IT (EXCITE) funded by the European Regional Development Fund, through the research grant TK148. This research was funded by “la Caixa” Foundation’s Social Research Call 2021 under the project code SR20-00386 to VME, and by grants from the Heidi Demetriades Foundation, the ETH Zurich Foundation, and the Henan Provincial People’s Hospital Outstanding Talents Founding Grant Project to AZ.Peer reviewe

    Exposing an “Intangible” Cognitive Skill among Collegiate Football Players: Enhanced Interference Control

    No full text
    American football is played in a chaotic visual environment filled with relevant and distracting information. We investigated the hypothesis that collegiate football players show exceptional skill at shielding their response execution from the interfering effects of distraction (interference control). The performances of 280 football players from National Collegiate Athletic Association Division I football programs were compared to age-matched controls in a variant of the Eriksen flanker task (Eriksen and Eriksen, 1974). This task quantifies the magnitude of interference produced by visual distraction on split-second response execution. Overall, football athletes and age controls showed similar mean reaction times (RTs) and accuracy rates. However, football athletes were more proficient at shielding their response execution speed from the interfering effects of distraction (i.e., smaller flanker effect costs on RT). Offensive and defensive players showed smaller interference costs compared to controls, but defensive players showed the smallest costs. All defensive positions and one offensive position showed statistically smaller interference effects when compared directly to age controls. These data reveal a clear cognitive advantage among football athletes at executing motor responses in the face of distraction, the existence and magnitude of which vary by position. Individual differences in cognitive control may have important implications for both player selection and development to improve interference control capabilities during play
    corecore