9,893 research outputs found

    A Novel Planar Fractal Antenna with CPW-Feed for Multiband applications

    Get PDF
    In this paper, a multiband antenna using a novel fractal design is presented. The antenna structure is formed by inscribing a hexagonal slot within a circle. This base structure is then scaled and arranged within the hexagon along its sides without touching the outer structure. The proposed CPW fed, low profile antenna offers good performance in the 1.65-2.59 GHz, 4.16-4.52 GHz and 5.54-6.42 GHz bands and is suitable for GSM 1800/1900, Bluetooth, IMT advanced system and upper WLAN applications. The antenna has been fabricated on a substrate of height 1.6mm and er=4.4 and simulation and experimental results are found to be in good agreement

    Enhancement of pigmeat quality by altering pre-slaughter management

    Get PDF
    End of project reportThe studies presented in this report were conducted to investigate the effect of breed, slaughter weight, castration of male pigs and strategic feeding strategies on the performance of pigs to slaughter and on their carcass quality. The effect of breed, gender and feeding regimen on the performance of pigs and their carcass quality was examined in the first study (Section 3). From weaning to slaughter Landrace-sired pigs grew at a similar rate but had a better feed conversion efficiency compared with Duroc-sired pigs. Landrace-sired pigs also had a higher carcass lean and greater muscle depth than Duroc-sired pigs. Entire male pigs grew more efficiently, had lower lean content in their carcasses and had a reduced kill out yield when compared with gilts. The eye muscle depth was greater for gilts than entire males. Diluting the diet with grass-meal (GM) reduced growth rate, caused a deterioration in feed conversion efficiency, reduced back fat thickness, reduced eye muscle thickness and reduced kill out yield compared to the control feeding regimen of a cereal based diet. Compensatory growth was observed during a re-alimentation period following a period of diet dilution with grass-meal. However, where it did occur, in most cases it was only partial. Adding 5% rapeseed oil instead of lard to the finisher diet increased nitrogen utilization efficiency and phosphorous utilization efficiency. The effect of gender (boar, castrate, gilt) and slaughter weight (80 to 120kg) on pig performance, carcass quality, meat quality, and nitrogen excretion was investigated in the second study (Section 4). Boars grew faster than gilts and more efficiently than castrates or gilts. Castrates had a higher kill out yield than boars. Nitrogen excretion from castrates was similar to gilts which were both higher than that from boars. The processing value of carcasses from castrates may be higher than that of boars and gilts. In particular castrates had heavier loins and bellies than either boars or gilts. Carcasses from castrates and gilts had a higher temperature (recorded 24 hours post slaughter) than boars. However, pH24 was not affected by gender. The intramuscular fat content of the l. dorsi in castrates was higher than that of boars or gilts, however at 1.65% this was well below the level (2.0%) above which any noticeable sensory attributes might be detected. Feed intake increased with increasing slaughter weight and feed conversion efficiency deteriorated. N excretion also increased with each increment in weight. Carcass lean content increased up to 90kg live EOP 4939.doc 4 25/10/2005 weight then reached a plateau and declined after 110kg live weight. Heavier carcasses yielded more product for approximately the same slaughtering cost and the associated larger muscles could make it easier to use seam butchery techniques that result in lean, well-trimmed, attractive cuts and joints. The pH45 and pH24 were reduced with increasing slaughter weight and drip loss increased. Heavier pigs may be more prone to the development of PSE than lighter pigs as their carcass temperature remains higher for longer than that of lighter pigs

    Liberalism and Epistemic Diversity: Mill's Sceptical Legacy

    Get PDF

    Metformin induces distinct bioenergetic and metabolic profiles in sensitive versus resistant high grade serous ovarian cancer and normal fallopian tube secretory epithelial cells.

    Get PDF
    Metformin is a widely used agent for the treatment of diabetes and infertility, however, it has been found to have anti-cancer effects in a variety of malignancies including high grade serous ovarian cancer (HGSC). Studies describing the mechanisms by which metformin affects HGSC are ongoing, but detailed analysis of its effect on the cellular metabolism of both HGSC cells and their precursor, normal fallopian tube secretory epithelial cells (FTSECs), is lacking. We addressed the effects of metformin and the more potent biguanide, phenformin, on HGSC cell lines and normal immortalized FTSECs. Cell proliferation assays identified that FTSECs and a subset of HGSC cell lines are relatively resistant to the anti-proliferative effects of metformin. Bioenergetic and metabolomic analyses were used to metabolically differentiate the metformin-sensitive and metformin-resistant cell lines. Bioenergetically, biguanides elicited a significant decrease in mitochondrial respiration in all HGSC cells and FTSECs. However, biguanides had a greater effect on mitochondrial respiration in metformin sensitive cells. Metabolomic analysis revealed that metformin and phenformin generally induce similar changes in metabolic profiles. Biguanide treatment led to a significant increase in NADH in FTSECs and HGSC cells. Interestingly, biguanide treatment induced changes in the levels of mitochondrial shuttle metabolites, glycerol-3-phopshate (G3P) and aspartate, specifically in HGSC cell lines and not in FTSECs. Greater alterations in G3P or aspartate levels were also found in metformin sensitive cells relative to metformin resistant cells. These data identify bioenergetic and HGSC-specific metabolic effects that correlate with metformin sensitivity and novel metabolic avenues for possible therapeutic intervention

    Contributors to the March Issue/Notes

    Get PDF
    Notes by John A. Berry, Joseph P. Judge, Paul Kempter, Joseph A. McCabe, William T. Kirby, Granville P. Ziegler, and Donald F. Wise

    Pressure-induced phase transition in the electronic structure of palladium nitride

    Full text link
    We present a combined theoretical and experimental study of the electronic structure and equation of state (EOS) of crystalline PdN2. The compound forms above 58 GPa in the pyrite structure and is metastable down to 11 GPa. We show that the EOS cannot be accurately described within either the local density or generalized gradient approximations. The Heyd-Scuseria-Ernzerhof exchange-correlation functional (HSE06), however, provides very good agreement with experimental data. We explain the strong pressure dependence of the Raman intensities in terms of a similar dependence of the calculated band gap, which closes just below 11 GPa. At this pressure, the HSE06 functional predicts a first-order isostructural transition accompanied by a pronounced elastic instability of the longitudinal-acoustic branches that provides the mechanism for the experimentally observed decomposition. Using an extensive Wannier function analysis, we show that the structural transformation is driven by a phase transition of the electronic structure, which is manifested by a discontinuous change in the hybridization between Pd-d and N-p electrons as well as a conversion from single to triple bonded nitrogen dimers. We argue for the possible existence of a critical point for the isostructural transition, at which massive fluctuations in both the electronic as well as the structural degrees of freedom are expected.Comment: 9 pages, 12 figures. Revised version corrects minor typographical error
    corecore