106 research outputs found

    Dominance by the Introduced Tree \u3cem\u3eRhamnus cathartica\u3c/em\u3e (Common Buckthorn) May Limit Aboveground Carbon Storage in Southern Wisconsin Forests

    Get PDF
    Many ecosystems are now dominated by introduced species, and because dominant species drive ecosystem properties, these changes lead to increased uncertainty in estimates of carbon storage and cycling. We examined aboveground biomass in forests dominated by the introduced tree Rhamnus cathartica (common buckthorn) relative to forests dominated by native species, and measured aboveground biomass increment over a three-year period (2005–2008). Three of the four lowest biomass levels occurred in R. cathartica-dominated forests, and biomass in these forest types was stored primarily in trees 10–20 cm DBH. By contrast, forests dominated by native trees (including those with R. cathartica understories) had the six highest biomass levels, and biomass was stored primarily in trees \u3e50 cm DBH. On average, forests dominated by R. cathartica stored half as much aboveground biomass (14.6 ± 3.3 kg/m2) as forests dominated by native tree species (28.9 ± 8.3 kg/m2). R. cathartica-dominated forests also had half the aboveground biomass increment of native-dominated forests (0.28 vs. 0.60 kg/m2/year). Although known anecdotally as a fast-growing species, R. cathartica growth rates declined with increasing size. Between 2005 and 2008, R. cathartica individuals \u3c10 cm DBH grew faster than native species; however, R. cathartica individuals \u3e10 cm DBH grew consistently slower than native species. Overall, our findings indicate that intrinsic size limitations on R. cathartica will lead to lower biomass stocks in forests where it acts as a canopy dominant relative to forests dominated by native tree species

    Minimizing Bias in Biomass Allometry: Model Selection and Log‐Transformation of Data

    Get PDF
    Nonlinear regression is increasingly used to develop allometric equations for forest biomass estimation (i.e., as opposed to the traditional approach of log‐transformation followed by linear regression). Most statistical software packages, however, assume additive errors by default, violating a key assumption of allometric theory and possibly producing spurious models. Here, we show that such models may bias stand‐level biomass estimates by up to 100 percent in young forests, and we present an alternative nonlinear fitting approach that conforms with allometric theory

    Novel Forests Maintain Ecosystem Processes After the Decline of Native Tree Species

    Get PDF
    The positive relationship between species diversity (richness and evenness) and critical ecosystem functions, such as productivity, carbon storage, and nutrient cycling, is often used to predict the consequences of extinction. At regional scales, however, plant species richness is mostly increasing rather than decreasing because successful plant species introductions far outnumber extinctions. If these regional increases in richness lead to local increases in diversity, a reasonable prediction is that productivity, carbon storage, and nutrient cycling will increase following invasion, yet this prediction has rarely been tested empirically. We tested this prediction in novel forest communities dominated by introduced species (~90% basal area) in lowland Hawaiian rain forests by comparing their functionality to that of native forests. We conducted our comparison along a natural gradient of increasing nitrogen availability, allowing for a more detailed examination of the role of plant functional trait differences (specifically, N2 fixation) in driving possible changes to ecosystem function. Hawaii is emblematic of regional patterns of species change; it has much higher regional plant richness than it did historically, due to \u3e1000 plant species introductions and only ~71 known plant extinctions, resulting in an ~100% increase in richness. At local scales, we found that novel forests had significantly higher tree species richness and higher diversity of dominant tree species. We further found that aboveground biomass, productivity, nutrient turnover (as measured by soil-available and litter-cycled nitrogen and phosphorus), and belowground carbon storage either did not differ significantly or were significantly greater in novel relative to native forests. We found that the addition of introduced N2-fixing tree species on N-limited substrates had the strongest effect on ecosystem function, a pattern found by previous empirical tests. Our results support empirical predictions of the functional effects of diversity, but they also suggest basic ecosystem processes will continue even after dramatic losses of native species diversity if simple functional roles are provided by introduced species. Because large portions of the Earth\u27s surface are undergoing similar transitions from native to novel ecosystems, our results are likely to be broadly applicable

    Liana diversity, abundance, and mortality in a tropical wet forest in Costa Rica

    Get PDF
    Lianas can have a large impact on the diversity, structure, and dynamics of tropical forests, yet they remain essentially unknown even in some of the most intensely studied tropical forests, such as La Selva Biological Station in Costa Rica. We quantified the diversity, abundance, and mortality of lianas in primary and selectively logged forest at La Selva for over 3 years, from January 1999 until July 2002. We measured, identified, permanently marked, and mapped all lianas ≄1.3 m in length and 2 mm in diameter, whether climbing or free-standing, in nine, m (864 m2) plots. There were no significant differences in density, diversity, or mortality between primary forest and areas that were selectively logged approximately 50 years prior to our study. We found a mean density of 1493 lianas ha−1 and a mean species richness of 23 species per 864 m2 plot. Annual mortality was 9.4% over all size-classes, but was the highest for the smallest individuals (\u3c2 cm in diameter). Annual mortality for larger individuals (≄5 cm) was much lower over the 3.5-year period (3.2% per year) and the five most abundant species suffered no mortality in this size-class. In contrast to many lowland neotropical forests, where Bignoniaceae and Fabaceae are reported to be the dominant liana families, at La Selva we found that Sapindaceae was the most speciose family and Dilleniaceae the most abundant. Moutabea aculeata (Polygalaceae) was the most abundant species, constituting approximately 17% of the individuals and having the lowest mortality of all 60 species. The 10 most abundant species at La Selva accounted for more than 60% of all individuals. Compared to other lowland sites in the neotropics, including other wet forests, the abundance and diversity of lianas at La Selva are very low

    Lianas in gaps reduce carbon accumulation in a tropical forest

    Get PDF
    Treefall gaps are the “engines of regeneration” in tropical forests and are loci of high tree recruitment, growth, and carbon accumulation. Gaps, however, are also sites of intense competition between lianas and trees, whereby lianas can dramatically reduce tree carbon uptake and accumulation. Because lianas have relatively low biomass, they may displace far more biomass than they contribute, a hypothesis that has never been tested with the appropriate experiments. We tested this hypothesis with an 8-yr liana removal experiment in central Panama. After 8 years, mean tree biomass accumulation was 180% greater in liana-free treefall gaps compared to control gaps. Lianas themselves contributed only 24% of the tree biomass accumulation they displaced. Scaling to the forest level revealed that lianas in gaps reduced net forest woody biomass accumulation by 8.9% to nearly 18%. Consequently, lianas reduce whole-forest carbon uptake despite their relatively low biomass. This is the first study to demonstrate experimentally that plant–plant competition can result in ecosystem-wide losses in forest carbon, and it has critical implications for recently observed increases in liana density and biomass on tropical forest carbon dynamics

    Limited native plant regeneration in novel, exotic-dominated forests on Hawai’i

    Get PDF
    Ecological invasions are a major driver of global environmental change. When invasions are frequent and prolonged, exotic species can become dominant and ultimately create novel ecosystem types. These ecosystems are now widespread globally. Recent evidence from Puerto Rico suggests that exotic-dominated forests can provide suitable regeneration sites for native species and promote native species abundance, but this pattern has been little explored elsewhere. We surveyed 46 sites in Hawai’i to determine whether native species occurred in the understories of exotic-dominated forests. Native trees smaller than 10 cm in diameter were absent in 28 of the 46 sites and rare in the others. Natives were never the dominant understory species; in fact, they accounted for less than 10% of understory basal area at all but six sites, and less than 4% on average. Sites with native species in the understory tended to be on young lava substrate lacking human disturbance, and were mostly located close to intact, native-dominated forest stands. Even where we found some native species, however, most were survivors of past exotic encroachment into native forest, rather than products of active recolonization by native species. In contrast with successional trajectories in Puerto Rico, Hawaii\u27s exotic-dominated forests can emerge, via invasion, without human disturbance and native Hawaiian plants are largely unable to colonize them once they appear. We suggest that a wide diversity of growth strategies among the exotic species on Hawai’i may limit the opportunities for native plants to colonize exotic-dominated forests

    Increasing Liana Abundance and Basal Area in a Tropical Forest: The Contribution of Long‐distance Clonal Colonization

    Get PDF
    Recent evidence suggests that liana abundance and biomass are increasing in Neotropical forests, representing a major structural change to tropical ecosystems. Explanations for these increases, however, remain largely untested. Over an 8‐yr period (1999–2007), we censused lianas in nine, 24 × 36 m permanent plots in old‐growth and selectively logged forest at La Selva Biological Station, Costa Rica to test whether: (1) liana abundance and basal area are increasing in this forest; (2) the increase is being driven by increased recruitment, decreased mortality, or both; and (3) long‐distance clonal colonization explains the increase in liana abundance and basal area. We defined long‐distance clonal colonization as lianas that entered and rooted in the plots as vegetative propagules of stems that originated from outside or above the plot, and were present in 2007, but not in 1999 or 2002. Our hypotheses were supported in the old‐growth forest: mean liana abundance and BA (≄1 cm diameter) increased 15 and 20 percent, respectively, and clonal colonization from outside of the plots contributed 19 and 60 percent (respectively) to these increases. Lianas colonized clonally by falling vertically from the forest canopy above or growing horizontally along the forest floor and re‐rooting—common forms of colonization for many liana species. In the selectively logged forest, liana abundance and BA did not change, and thus the pattern of increasing lianas may be restricted to old‐growth forests. In summary, our data support the hypothesis that lianas are increasing in old‐growth forests, and that long‐distance clonal colonization is a major contributor

    Human and environmental controls over aboveground carbon storage in Madagascar

    Get PDF
    Background: Accurate, high-resolution mapping of aboveground carbon density (ACD, Mg C ha-1) could provide insight into human and environmental controls over ecosystem state and functioning, and could support conservation and climate policy development. However, mapping ACD has proven challenging, particularly in spatially complex regions harboring a mosaic of land use activities, or in remote montane areas that are difficult to access and poorly understood ecologically. Using a combination of field measurements, airborne Light Detection and Ranging (LiDAR) and satellite data, we present the first large-scale, high-resolution estimates of aboveground carbon stocks in Madagascar. Results: We found that elevation and the fraction of photosynthetic vegetation (PV) cover, analyzed throughout forests of widely varying structure and condition, account for 27-67 % of the spatial variation in ACD. This finding facilitated spatial extrapolation of LiDAR-based carbon estimates to a total of 2,372,680 ha using satellite data. Remote, humid sub-montane forests harbored the highest carbon densities, while ACD was suppressed in dry spiny forests and in montane humid ecosystems, as well as in most lowland areas with heightened human activity. Independent of human activity, aboveground carbon stocks were subject to strong physiographic controls expressed through variation in tropical forest canopy structure measured using airborne LiDAR. Conclusions: High-resolution mapping of carbon stocks is possible in remote regions, with or without human activity, and thus carbon monitoring can be brought to highly endangered Malagasy forests as a climate-change mitigation and biological conservation strategy

    The High-Rise Resolution Carbon Geography of Peru

    Get PDF
    Vegetation is one of the most spatially and temporally dynamic reservoirs of carbon in the world. The amount of carbon stored in vegetation above ground in woody biomass is particularly variable, and is subject to rapid change via land uses that remove vegetation cover, causing carbon emissions. Reducing carbon emissions from deforestation and forest degradation, as well as from other non-forested ecosystems, is therefore a priority in both national and international strategies to conserve ecosystems and to reduce carbon dioxide build-up in the atmosphere.PerĂș harbors an enormous range of ecological conditions, from hot and humid lowland Amazonian forests to high-altitude Andean ecosystems and desert conditions on the Pacific coast. The diversity of environments in PerĂș greatly challenges efforts to measure, map and monitor carbon stocks throughout the country.We report the first high-resolution geographic study of aboveground carbon stocks throughout the more than 128 million hectares that comprise the country of PerĂș. This report communicates the development of our methodology and an extensive validation of the resulting high-resolution carbon map of PerĂș. It also provides the first quantitative analysis of the basic environmental factors determining the carbon geography of Peruvian ecosystems, political regions, and protected areas
    • 

    corecore