78 research outputs found

    The Distribution of Stellar Mass in the Pleiades

    Full text link
    As part of an effort to understand the origin of open clusters, we present a statistical analysis of the currently observed Pleiades. Starting with a photometric catalog of the cluster, we employ a maximum likelihood technique to determine the mass distribution of its members, including single stars and both components of binary systems. We find that the overall binary fraction for unresolved pairs is 68%. Extrapolating to include resolved systems, this fraction climbs to about 76%, significantly higher than the accepted field-star result. Both figures are sensitive to the cluster age, for which we have used the currently favored value of 125 Myr. The primary and secondary masses within binaries are correlated, in the sense that their ratios are closer to unity than under the hypothesis of random pairing. We map out the spatial variation of the cluster's projected and three-dimensional mass and number densities. Finally, we revisit the issue of mass segregation in the Pleiades. We find unambiguous evidence of segregation, and introduce a new method for quantifying it.Comment: 41 pages, 14 figures To Be Published in The Astrophysical Journa

    The Dynamical Evolution of the Pleiades

    Full text link
    We present the results of a numerical simulation of the history and future development of the Pleiades. This study builds on our previous one that established statistically the present-day structure of this system. Our simulation begins just after molecular cloud gas has been expelled by the embedded stars. We then follow, using an N body code, the stellar dynamical evolution of the cluster to the present and beyond. Our initial state is that which evolves, over the 125 Myr age of the cluster, to a configuration most closely matching the current one. We find that the original cluster, newly stripped of gas, already had a virial radius of 4 pc. This configuration was larger than most observed, embedded clusters. Over time, the cluster expanded further and the central surface density fell by about a factor of two. We attribute both effects to the liberation of energy from tightening binaries of short period. Indeed, the original binary fraction was close to unity. The ancient Pleiades also had significant mass segregation, which persists in the cluster today. In the future, the central density of the Pleiades will continue to fall. For the first few hundred Myr, the cluster as a whole will expand because of dynamical heating by binaries. The expansion process is aided by mass loss through stellar evolution, which weakens the system's gravitational binding. At later times, the Galactic tidal field begins to heavily deplete the cluster mass. It is believed that most open clusters are eventually destroyed by close passage of a giant molecular cloud. Barring that eventuality, the density falloff will continue for as long as 1 Gyr, by which time most of the cluster mass will have been tidally stripped away by the Galactic field.Comment: 45 pages, 13 figures, 2 tables; Accepted for publication in MNRA

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF
    • …
    corecore