45 research outputs found

    Effect of Temperature on Cystic Fibrosis Lung Disease and Infections: A Replicated Cohort Study

    Get PDF
    Progressive lung disease accounts for the majority of morbidity and mortality observed in cystic fibrosis (CF). Beyond secondhand smoke exposure and socio-economic status, the effect of specific environmental factors on CF lung function is largely unknown.Multivariate regression was used to assess correlation between specific environmental factors, the presence of pulmonary pathogens, and variation in lung function using subjects enrolled in the U.S. CF Twin and Sibling Study (CFTSS: nβ€Š=β€Š1378). Significant associations were tested for replication in the U.S. CF Foundation Patient Registry (CFF: nβ€Š=β€Š16439), the Australian CF Data Registry (ACFDR: nβ€Š=β€Š1801), and prospectively ascertained subjects from Australia/New Zealand (ACFBAL: nβ€Š=β€Š167).In CFTSS subjects, the presence of Pseudomonas aeruginosa (ORβ€Š=β€Š1.06 per Β°F; p<0.001) was associated with warmer annual ambient temperatures. This finding was independently replicated in the CFF (1.02; p<0.001), ACFDR (1.05; pβ€Š=β€Š0.002), and ACFBAL (1.09; pβ€Š=β€Š0.003) subjects. Warmer temperatures (-0.34 points per Β°F; pβ€Š=β€Š0.005) and public insurance (-6.43 points; p<0.001) were associated with lower lung function in the CFTSS subjects. These findings were replicated in the CFF subjects (temperature: -0.31; p<0.001; insurance: -9.11; p<0.001) and similar in the ACFDR subjects (temperature: -0.23; pβ€Š=β€Š0.057). The association between temperature and lung function was minimally influenced by P. aeruginosa. Similarly, the association between temperature and P. aeruginosa was largely independent of lung function.Ambient temperature is associated with prevalence of P. aeruginosa and lung function in four independent samples of CF patients from two continents

    Sources of Variation in Sweat Chloride Measurements in Cystic Fibrosis

    Get PDF
    Rationale: Expanding the use of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors for the treatment of cystic fibrosis (CF) requires precise and accurate biomarkers. Sweat chloride concentration provides an in vivo assessment of CFTR function, but it is unknown the degree to which CFTR mutations account for sweat chloride variation

    Structure and Functions of Pediatric Aerodigestive Programs: A Consensus Statement

    Get PDF
    Aerodigestive programs provide coordinated interdisciplinary care to pediatric patients with complex congenital or acquired conditions affecting breathing, swallowing, and growth. Although there has been a proliferation of programs, as well as national meetings, interest groups and early research activity, there is, as of yet, no consensus definition of an aerodigestive patient, standardized structure, and functions of an aerodigestive program or a blueprint for research prioritization. The Delphi method was used by a multidisciplinary and multi-institutional panel of aerodigestive providers to obtain consensus on 4 broad content areas related to aerodigestive care: (1) definition of an aerodigestive patient, (2) essential construct and functions of an aerodigestive program, (3) identification of aerodigestive research priorities, and (4) evaluation and recognition of aerodigestive programs and future directions. After 3 iterations of survey, consensus was obtained by either a supermajority of 75% or stability in median ranking on 33 of 36 items. This included a standard definition of an aerodigestive patient, level of participation of specific pediatric disciplines in a program, essential components of the care cycle and functions of the program, feeding and swallowing assessment and therapy, procedural scope and volume, research priorities and outcome measures, certification, coding, and funding. We propose the first consensus definition of the aerodigestive care model with specific recommendations regarding associated personnel, infrastructure, research, and outcome measures. We hope that this may provide an initial framework to further standardize care, develop clinical guidelines, and improve outcomes for aerodigestive patients

    A novel lung disease phenotype adjusted for mortality attrition for cystic fibrosis Genetic modifier studies

    Get PDF
    Genetic studies of lung disease in Cystic Fibrosis are hampered by the lack of a severity measure that accounts for chronic disease progression and mortality attrition. Further, combining analyses across studies requires common phenotypes that are robust to study design and patient ascertainment

    Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis

    Get PDF
    The identification of small molecules that target specific CFTR variants has ushered in a new era of treatment for cystic fibrosis (CF), yet optimal, individualized treatment of CF will require identification and targeting of disease modifiers. Here we use genome-wide association analysis to identify genetic modifiers of CF lung disease, the primary cause of mortality. Meta-analysis of 6,365 CF patients identifies five loci that display significant association with variation in lung disease. Regions on chr3q29 (MUC4/MUC20; P=3.3 Γ— 10βˆ’11), chr5p15.3 (SLC9A3; P=6.8 Γ— 10βˆ’12), chr6p21.3 (HLA Class II; P=1.2 Γ— 10βˆ’8) and chrXq22-q23 (AGTR2/SLC6A14; P=1.8 Γ— 10βˆ’9) contain genes of high biological relevance to CF pathophysiology. The fifth locus, on chr11p12-p13 (EHF/APIP; P=1.9 Γ— 10βˆ’10), was previously shown to be associated with lung disease. These results provide new insights into potential targets for modulating lung disease severity in CF

    The relationship of lung function with ambient temperature

    No full text
    <div><p>Background</p><p>Lung function is complex trait with both genetic and environmental factors contributing to variation. It is unknown how geographic factors such as climate affect population respiratory health.</p><p>Objective</p><p>To determine whether ambient air temperature is associated with lung function (FEV<sub>1</sub>) in the general population.</p><p>Design/Setting</p><p>Associations between spirometry data from two National Health and Nutrition Examination Survey (NHANES) periods representative of the U.S. non-institutionalized population and mean annual ambient temperature were assessed using survey-weighted multivariate regression.</p><p>Participants/Measurements</p><p>The NHANES III (1988–94) cohort included 14,088 individuals (55.6% female) and the NHANES 2007–12 cohort included 14,036 individuals (52.3% female), with mean ages of 37.4Β±23.4 and 34.4Β±21.8 years old and FEV<sub>1</sub> percent predicted values of 99.8Β±15.8% and 99.2Β±14.5%, respectively.</p><p>Results</p><p>After adjustment for confounders, warmer ambient temperatures were associated with lower lung function in both cohorts (NHANES III <i>p</i> = 0.020; NHANES 2007–2012 <i>p</i> = 0.014). The effect was similar in both cohorts with a 0.71% and 0.59% predicted FEV<sub>1</sub> decrease for every 10Β°F increase in mean temperature in the NHANES III and NHANES 2007–2012 cohorts, respectively. This corresponds to ~2 percent predicted difference in FEV<sub>1</sub> between the warmest and coldest regions in the continental United States.</p><p>Conclusions</p><p>In the general U.S. population, residing in regions with warmer ambient air temperatures was associated with lower lung function with an effect size similar to that of traffic pollution. Rising temperatures associated with climate change could have effects on pulmonary function in the general population.</p></div

    Adjusted survey weighted multivariate regressions to assess the effect of spirometry temperature in the NHANES III cohort<sup>*</sup>.

    No full text
    <p>Adjusted survey weighted multivariate regressions to assess the effect of spirometry temperature in the NHANES III cohort<sup><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0191409#t004fn001" target="_blank">*</a></sup>.</p
    corecore