88 research outputs found

    Identification of a cusp catastrophe in a gap-leaping western boundary current

    Get PDF
    The Luzon Strait is an example of a location where a western boundary current must negotiate a gap in bathymetry. In the gap region, the current can exhibit multiple steady states (leaping the gap or penetrating the gap) and hysteresis (dependence on past flow state). Laboratory experiments on such flows are presented in order to investigate the system behavior in a two-dimensional parameter space of varying flow rate and platform rotation rate. The experiments were performed in a cylindrical tank on a one-meter rotating table. A semi-circular ridge with a gap was inserted over sloping bottom topography in the active region, and the flow was driven by pumping water through sponges. The flow was visualized with the Particle Image Velocimetry method. By varying the flow rate (strength of current), we were able to identify transitions between leaping and penetrating flow states. These transitions bound a region of multiple steady states where hysteresis is present. The dynamics of the system is shown to exhibit a cusp catastrophe classified as A3. The scaling dependencies of some critical properties of the flow are analyzed

    Toward a unified interpretation of the “proper”/“smooth” orthogonal decompositions and “state variable”/“dynamic mode” decompositions with application to fluid dynamics

    Get PDF
    A common interpretation is presented for four powerful modal decomposition techniques: “proper orthogonal decomposition,” “smooth orthogonal decomposition,” “state-variable decomposition,” and “dynamic mode decomposition.” It is shown that, in certain cases, each technique can be interpreted as an optimization problem and similarities between methods are highlighted. By interpreting each technique as an optimization problem, significant insight is gained toward the physical properties of the identified modes. This insight is strengthened by being consistent with cross-multiple decomposition techniques. To illustrate this, an inter-method comparison of synthetic hypersonic boundary layer stability data is presented

    A novel method for bone fatigue monitoring and prediction

    Get PDF
    Bone fatigue, often manifest as stress fractures, is a common injury that plagues many individuals, adversely affect quality of life, and is an obstacle to extended human spaceflight. This manuscript details a pilot study that was conducted to determine if the Phase Space Warping (PSW) methodology could be used to monitor/predict fatigue failure in bone tissue. A Moon\u27s beam experimental apparatus was used to perform variable amplitude fatigue tests on bovine bone specimens. Scanning electron microscopy was used to evaluate the fracture surface and identify the fracture type. The PSW method allowed for successful identification of the various damage modes and may lead to the development of a viable tool for predicting the health and fatigue life of bone

    Cross-Shelf Transport Through the Interaction among a Coastal Jet, a Topographic Wave, and Tides

    Get PDF
    Shelf break flows are often characterized by along-isobath jets with cross-shelf currents associated with tides and waves guided by variable topography. Here, we address the question: Can a superposition of such flows produce significant aperiodic cross-shelf transport? To answer this question, we use a barotropic analytic model for the jet based on a similarity solution of the shallow water equations over variable topography, a wave disturbance determined by the topography, and a diurnal tidal disturbance. We use standard Lagrangian methods to assess the cross-shelf transport, presenting the results, however, in a Eulerian frame, so as to be amenable to oceanographic observations. The relative roles of the different flow components in cross-shelf transport are assessed through an extensive parameter study. We find that a superposition of all three flow components can indeed produce consequential background aperiodic transport. An application of the model using recent observations from the Texas Shelf demonstrates that a combination of these background mechanisms can produce significant transport under realistic conditions

    World’s Finest Chocolate Automatized Palletizing System

    Get PDF
    World’s Finest Chocolate (WFC) is currently hand stacking each case of chocolate coming off its production lines onto pallets. This is leading to strain and potential injuries on employee’s backs and hands, as well as improper stacking that leads to less than sturdy pallet loads. This can result in employee recovery time off and medical bills. Also may lead to poor quality of stacking causing warehouse and shipping damage. Other companies have decided to utilize automatic palletizers to alleviate this issue. This is the current plan of action we are researching and proposing

    The Semantic Reader Project: Augmenting Scholarly Documents through AI-Powered Interactive Reading Interfaces

    Full text link
    Scholarly publications are key to the transfer of knowledge from scholars to others. However, research papers are information-dense, and as the volume of the scientific literature grows, the need for new technology to support the reading process grows. In contrast to the process of finding papers, which has been transformed by Internet technology, the experience of reading research papers has changed little in decades. The PDF format for sharing research papers is widely used due to its portability, but it has significant downsides including: static content, poor accessibility for low-vision readers, and difficulty reading on mobile devices. This paper explores the question "Can recent advances in AI and HCI power intelligent, interactive, and accessible reading interfaces -- even for legacy PDFs?" We describe the Semantic Reader Project, a collaborative effort across multiple institutions to explore automatic creation of dynamic reading interfaces for research papers. Through this project, we've developed ten research prototype interfaces and conducted usability studies with more than 300 participants and real-world users showing improved reading experiences for scholars. We've also released a production reading interface for research papers that will incorporate the best features as they mature. We structure this paper around challenges scholars and the public face when reading research papers -- Discovery, Efficiency, Comprehension, Synthesis, and Accessibility -- and present an overview of our progress and remaining open challenges

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • 

    corecore