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Abstract: Shelf break flows are often characterized by along-isobath jets with cross-shelf currents
associated with tides and waves guided by variable topography. Here, we address the question:
Can a superposition of such flows produce significant aperiodic cross-shelf transport? To answer this
question, we use a barotropic analytic model for the jet based on a similarity solution of the shallow
water equations over variable topography, a wave disturbance determined by the topography,
and a diurnal tidal disturbance. We use standard Lagrangian methods to assess the cross-shelf
transport, presenting the results, however, in a Eulerian frame, so as to be amenable to oceanographic
observations. The relative roles of the different flow components in cross-shelf transport are assessed
through an extensive parameter study. We find that a superposition of all three flow components
can indeed produce consequential background aperiodic transport. An application of the model
using recent observations from the Texas Shelf demonstrates that a combination of these background
mechanisms can produce significant transport under realistic conditions.

Keywords: cross-shelf transport; topographic Rossby waves; finite time Lyapunov exponents;
Texas-Louisiana Shelf

1. Introduction

The outer shelf and shelf break constitute some of the most important and challenging regions
of the world oceans. As discussed by Brink [1], the importance arises from the fact that this is where
significant amounts of nutrients, biological matter, pollutants, and other material are exchanged
between coastal regions and the deep ocean. Concurrently, observing and predicting significant
exchange events in this region is challenging. As documented in some detail 25 years ago by
Huthnance [2] and more recently by Brink [1], the difficulties arise from the plethora of physical
processes operating in this zone and their disparate time and space scales.

Generally, the flow along shelf breaks is composed of relatively energetic along-isobath currents
with cross-shelf flows associated with tides and turbulent processes. Moreover, atmospheric processes
and the interactions of this flow with deep-ocean eddies may produce intense, yet brief cross-shelf
exchange and significant upwelling and vertical transport [3]. These mechanisms combine to produce
significant inhomogeneity in the spatial structure of fields, such as temperature, salinity, and other
tracers, and of the currents themselves. The consequent range of time and space scales involved is
sufficiently large to pose challenges for all but the most comprehensive field programs, as well as for
basin-scale general circulation models to resolve.

Prior studies of the exchange across shelf regions, such as reported in [4,5], focused on property
gradients and mixing coefficients based on climatological data, hydrographic cruises, and moorings.
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These studies were useful for establishing seasonal to climatological trends in specific geographic
regions. However, as demonstrated by the application to transport of oil into near-shore waters during
the Deepwater Horizon oil spill [6], such data do not adequately account for the transport across the
shelf even in relatively quiescent periods. This suggests that there may be important but heretofore
overlooked background cross-shelf transport processes.

To fill this gap, we test the hypothesis that aperiodic cross-shelf transport can arise from a
combination of simple periodic processes that frequently form the background shelf circulation.
For present purposes, it is sufficient to use a model that considers just three processes, specifically the
interaction of a coastal current modulated by a topographic wave disturbance and tides. Each process
by itself can only lead to periodic fluid exchange. Even a combination of any two of these is insufficient;
but as we shall demonstrate, together, these three processes have the potential to lead to significant
aperiodic cross-shelf water exchange.

As transport is essentially a Lagrangian process, we employ appropriate Lagrangian methods to
elucidate particle behavior in such a flow. Since the early work of Bower [7], Samelson [8], and Rogerson
et al. [9] on fluid exchange across meandering jets, the application of these methods has produced
significant progress in understanding transport in geophysical flows. See also Wiggins [10], Haller [11],
Samelson and Wiggins [12], Budyansky et al. [13], and Pratt et al. [14] for more recent results and
references. Here, we extend this approach to jet flow over a sloping bottom. However, we choose to
present the results relative to a Eulerian reference to make our results more amenable to oceanographic
observations.

The balance of this report is organized as follows. The next section reviews the model and analysis
methods. A base case with typical parameter values is analyzed in detail and basic transport properties
described in Section 3. This is followed by an extensive exploration of the model parameter space in
Section 4. In Section 5, we apply the model to recent data from the Texas-Louisiana Shelf. This region
is chosen because it is generally typical of shelf and upper slope regions in the world and because of
the availability of recent hydrographic data. Our report concludes in Section 6 with a summary and
discussion of some broader implications for cross-shelf transport.

2. Model and Methods

In order to analyze the transport associated with tidal oscillations in the presence of a classic coastal
jet with a topographic Rossby wave disturbance, we turn to the theoretical framework developed by
Kuehl [15]. This setup leads to an analytic solution for the transport function and hence the velocity
field. Trajectories are computed numerically, using a standard explicit fourth order Runge-Kutta
scheme. Details of the model are provided in Section 2.1, followed by the methodology to identify
Lagrangian structures in Section 2.2 and for transport quantification in Section 2.3.

2.1. The Model

The flow of interest consists of the following components: (1) a coastal jet in the form of an
along-slope mean flow with peak velocity located offshore; (2) a traveling wave, such as a topographic
Rossy wave, with a multi-day period; and (3) a higher frequency tidal oscillation. Here, we will
consider the simplest case of a barotropic flow along slope topography with Ekman dissipation [15].
Note that extensions to the non-linear case [16] and to stratified flow [17] are relatively straightforward,
but beyond the scope of the present study.
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We adopt a right-handed coordinate system with x in the along-shore direction and y in the
cross-shore direction, where y = 0 at the center of the coastal jet. The coastal jet is typically directed in
the negative x-direction, with shallower waters for higher values of y. See Figure 1. In the region of
interest, the bathymetry is taken to be a simple constant slope of the form:

h = h0 − Sy, (1)

for constants h0 and S. The three flow components are assumed to be linearly additive and are modeled
individually. The linear superposition assumption is justified when the background flow is small.
Within the jet core, the relative vorticity gradients may modify the topographic wave structure, but on
the scale of the shelf, topographic effects dominate.

Figure 1. Model coordinate system.

The mean flow is assumed to be steady and linear, with Ekman dissipation in a bottom boundary
layer as the dominant viscous term and the cross-stream shear dominating the relative vorticity.
Under these conditions, the vorticity-streamfunction formulation of the shallow water equations [18,19]
can be solved for the volume-transport streamfunction. The solution takes on the form of an error
function:

Ψjet = A erf(λy). (2)

A determines the strength of the coastal jet, while λ parameterizes its width. In general, λ

varies with x, so that the jet widens downstream. In an effort to isolate the lowest order dynamics,
we approximate λ as a constant, which corresponds to the limit of vanishing dissipation.

The traveling wave can generically be modeled by Ψwave = B exp(ikx + ily− iωwt). For typical
topographic waves, which follow isobaths, l = 0. To fix the analysis window, a frame of reference
is chosen that moves with the wave at phase speed cp = ωw/k. With both of these modifications,
the associated volume-transport streamfunction simplifies to:

Ψwave = B cos(kx) +
∫ y

0
cph dy. (3)

B sets the amplitude of the wave disturbance, and k is the wavenumber. For a topographic Rossby
wave, the phase speed cp and wavenumber k do not vary independently, because of the dispersion
relation (e.g., [20]):

ωw = − βR2k
1 + R2k2 . (4)
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Here, β = S f /h0 is the topographic beta parameter, and R =
√

gh0/ f is the Rossby number,
where g is the gravitational constant and f is the Coriolis parameter. For typical values explored here,
R and k are sufficiently large that this dispersion relation can be well approximated by:

ωw ≈ −
βR2k
R2k2 = − β

k
. (5)

Substituting this expression and the definition for β into the equation for cp leads to
the relationship:

cp = − S f
h0k2 . (6)

Other dispersion relations can be implemented to model different topographically controlled
waves, such as continental shelf waves.

Finally, the high-frequency tidal oscillations are represented as a generic periodic time dependence
in the cross-shelf direction only:

Ψtide = C sin(2πωt)x. (7)

C and ω indicate the tidal amplitude and frequency, respectively.
Putting the pieces together yields the following volume-transport streamfunction:

Ψ = A erf(λy) + B cos(kx) +
∫ y

0
cph dy + C sin(2πωt)x. (8)

The corresponding velocity field takes the form:

u(x, y, t) = −1
h

∂Ψ
∂y

= − 2√
π

λ A
h

e−λ2y2 − cp = − 2√
π

λ A
h

e−λ2y2
+

S f
h0k2 , (9)

v(x, y, t) =
1
h

∂Ψ
∂x

= − k B
h

sin(kx) +
C
h

sin(2πωt). (10)

Thus, the along-shore flow, u, consists of the background jet component, plus the effect of the
moving frame of reference. The cross-shore flow, v, reflects the spatial oscillations of the topographic
wave and the temporal oscillations of the tide. It is assumed that the model domain is sufficiently far
from the coastal boundary, so that boundary effects do not impact the analysis.

The model is controlled by a total of ten parameters, A, λ, B, k, C, ω, h0, S, f , and the time interval
τ over which the volume transport is computed. Not all of these parameters have direct physical
interpretations. Therefore, we replace them with ones that do. These are summarized, with their
definitions in terms of the basic ten parameters, their physical meaning, units, and base case values,
in Table 1. With these derived parameters, the fundamental model equations become:

u(x, y, t) = −h0

h
Ue−16y2/L2 − 2π

Tk
, (11)

v(x, y, t) = −h0

h
V sin(kx) +

h0

h
Vtide sin(2πωt), (12)

where
k = − S f T

2πh0
(13)

and
f = 14.5842× 10−5 sin(φ). (14)
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Table 1. Model parameters, definitions, physical meaning, base case values, and units.

φ arcsin
(

f
14.5842× 10−5

)
latitude 43 (degrees)

h0 water depth at the peak of the coastal jet 100 (m)
S topographic slope 0.01 (non-dimensional)

U
2λA√

πh0
strength of the coastal jet 0.05 (m/s)

L 4
λ

width of the coastal jet 5000 (m)

V
kB
h0

amplitude of the topographic wave 0.05 (m/s)

T
2π

|cpk| topographic wave period 3 (days)

Vtide
C
h0

amplitude of the tidal oscillation 0.02 (m/s)

ω tidal frequency 1 (day−1)

τ analysis time interval 3 (days)

2.2. Lagrangian Structures: Finite-Time Lyapunov Exponents

One tool to map out the transport properties of a complex flow is the field of finite-time Lyapunov
exponents (FTLEs) [21]. FTLEs are a common method for approximating Lagrangian coherent
structures (LCS), i.e., manifolds that organize the domain into regions of different flow properties.
For detailed discussions of LCS, the reader is referred to the comprehensive synopses by Wiggins [10]
and Haller [11] and the references cited therein.

The FTLE is defined as follows: Consider the flow map φ, mapping initial position xxxo to a

final position xxx f at time T. The Cauchy–Green deformation tensor is defined as G = ∂φ
∂xxxo

(
∂φ
∂xxxo

)′
,

where (·)′ denotes the matrix transpose. If the largest eigenvalue of G is µ, then the FTLE is defined
as λ = log(

√
µ)/T. FTLE can be computed in forward and backward time. Ridges in the forward

FTLE field (shown in red here) are frequently associated with stable manifolds, while those in the
backward FTLE field (shown in blue) generally mimic unstable manifolds (this is not always true:
flows undergoing rapid transition can experience transport across FTLE ridges [22]). Intersections of
stable and unstable manifolds demarcate hyperbolic regions in the flow. Material approaches such an
intersection along the stable manifold and leaves along the unstable manifold.

While the velocity field for the model is analytic, the trajectories underlying our analysis are
computed numerically, using a fourth order Runge–Kutta scheme. Similarly, the elements of the strain
tensor F = ∂φ

∂xxxo
are computed by integrating along trajectories:

Fij =
∂xi
∂x0 j

= δij +
∫ t

0

∂ui
∂x0 j

dτ = δij +
∫ t

0

(
2

∑
k=1

∂ui
∂xk

Fkj

)
dτ, (15)

following Huntley et al. [23].
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2.3. Transport Quantification

For quantifying transport, we compute the area in the horizontal plane of the water masses in
question and multiply by the depth. For this purpose, the depth is approximated as stepwise constant
over segments dy = 10 m.

A quantitative theoretical tool for Lagrangian transport analyses is lobe dynamics [12]. The basic
idea is that a lobe, defined by two consecutive intersection points of the same two manifolds and
the manifold segments in between, moves from outside to inside the area of interest. This kind
of calculation works best in idealized, e.g., [9,24], or slowly evolving flows, e.g., [25,26], where the
manifolds are sharply defined. However, in the present case, this methodology is complicated in part
of the parameter space by the hyperbolic regions in the FTLE field being relatively weak and not
stationary (see Section 3 and Figure 3), while for different parameter choices, multiple ridges appear in
close proximity (not shown), making the problem prone to numerical errors. Significant variations
in the Lagrangian structures across the parameter space add further challenges. The best choice for
how to define the boundary segments from a Lagrangian analysis for the areas of interest is therefore
not clear. Moreover, the primary question we seek to address is the shoreward transport across the jet.
Therefore, we chose not to pursue lobe dynamics.

There are two natural options for defining the boundary for the cross-shelf transport. One is the
y = 0 plane, where the center of the unperturbed coastal jet is situated. This is equivalent to transport
across the line of constant depth h = 100 m. Due to its connection to a topographic line, this definition
of “cross-shelf” transport is easy to apply to observations. The other option is the plane defined by
Ψ = 0 that crosses y = 0 at t = 0. This plane moves with the flow, but returns with the tidal period to
its initial position. Its main advantage is that it is more directly related to the flow structures. That is,
in the Vtide = 0 case, there is no transport across Ψ = 0, while there is transient transport across y = 0.
Thus, in this manuscript, we chose to quantify cross-topographic transport relative to Ψ = 0.

Concretely, the transport calculation is performed by parameterizing the curve Ψ(t = 0) = 0 with
1001 evenly spaced particles over two wave periods that are advected using the analytic velocity field
and a fourth order fixed-step Runge–Kutta scheme. As distances between adjacent particles exceed
100 m, new particles are added along a linear interpolation between these particles. The area is then
computed between the initial and final realizations of the curve. The transport magnitude is reported
as the volume exchanged from onshore to offshore, which is equivalent to the volume exchanged in
the other direction.

3. Base Case

3.1. The Flow Field and Its Lagrangian Structures

For an initial exploration, we use parameter values that are realistic but not tuned to a specific
coast. The values are listed in Table 1. The coastal jet has its peak 10 km offshore and a width of
approximately 5 km. The jet is modified by a strong Rossby wave with a wavelength of approximately
23 km. The tidal frequency is one day. Because of the tide, the velocity field is time dependent even
in the moving reference frame we adopted. A snap-shot for t = 0 is shown in Figure 2a with the
corresponding volume-transport streamfunction in Figure 2b.
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(a)

(b)
Figure 2. (a) Model velocity field and (b) volume-transport streamfunction Ψ at t = 0 for the base case
parameters in Table 1.

Even though the three components of the flow field are individually simple, they combine into
a complex flow. This is reflected in the evolution of the LCS as visualized by ridges in the FTLE
fields. Four snapshots of the FTLE field for our base case are displayed in Figure 3. The FTLEs are
characterized at t = 0 in each interval of one wavelength by one hyperbolic region near y = −4.4 km
(e.g., at x = 0 km), with strong ridges emanating diagonally toward the shore, connecting it to another
weakly hyperbolic region near y = 0.08 km (e.g. at x = ±7.6 km). The structure oscillates slightly
shoreward and back over a tidal cycle (the other ridges visible in the plots are impacted by edge effects
and not necessarily meaningful). Initially, at time t = 0 (Figure 3a), the ridges are closely associated
with the Ψ = 15,000 m3/s contour. Over time, however, the Eulerian (Ψ) field tilts significantly away
from the Lagrangian (FTLE) field (Figure 3b–d), before coinciding again after one full tidal period.
This separation of Eulerian and Lagrangian flow structures is an indication of potential transport
across the Eulerian benchmark given by the Ψ-isoline.
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(a)

(b)

(c)

(d)
Figure 3. Finite-time Lyapunov exponent (FTLE) field for the base case parameters in Table 1, evaluated
over the time interval from three days forward and backward, centered at (a) t = 0, (b) t = 0.25 days,
(c) t = 0.5 days, and (d) t = 0.75 days. Backward-time FTLEs are shown at the blue end of the
colormap, while forward-time FTLEs are displayed in red. Black contours show the volume-transport
streamfunction at the center time. Grey shading indicates a lack of data due to boundary effects.
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3.2. Transport Properties

As described in Section 2.3, transport quantities are reported here relative to the Ψ = 0 surface.
The analysis time period is chosen to be identical to the wave period, or three tidal periods. It is generally
not true that the net transport after two tidal periods is twice that after one tidal period. Therefore, we have
not normalized the calculations by the time interval, which would be misleading in this regard.

Figure 4 shows the water masses that have been exchanged between on-shore and off-shore waters
over one wave period. Figure 4a,b show initial and final positions, respectively, of particles for a three
day integration, colored by their initial distance from the coast. Figure 4c illustrates the evolution of the
Ψ = 0 boundary curve, with red areas indicating off-shore and cyan on-shore transport. Much of the
observed mixing between shallower and deeper waters (Figure 4b) evidently occurs without crossing
the Ψ isoline. While this type of transport—across y = 0—may be of greater relevance for practical
applications, such as coastline protection from pollutants, the results here are focused on the smaller
but not insignificant transport across the Eulerian flow structure.

(a)

(b)

(c)
Figure 4. (a) Initial positions and (b) positions after three days of a set of sample trajectories, colored by
their initial y-position. (c) Water masses transported off-shore (cyan) and on-shore (red) across Ψ = 0
over the analysis period of three days.
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The patterns of the latter consist, in the base case, of four distinct lobes on each side of Ψ = 0 in
each interval of one wavelength. Over one wavelength (about 15.3 km), the total transport amounts to
0.30 km3 in each direction. To put this into context, the total volume of water on the shelf (Ψ < 0) over
one wavelength is 7.6 km3. Thus, the exchange constitutes a substantial portion, approximately 4%.
Even after one wave period, some filamentation of the exchanged water masses can be observed.

4. Parameter Space Exploration

The transport volume cited in Section 3.2 is specific to the model configuration for the base
case defined by the parameters in Table 1. This raises the question of how the transport varies
with the parameters. The ten-dimensional parameter space is too vast for exhaustive exploration.
Therefore, we will instead focus on three secondary non-dimensional parameters that capture the
relative importance of the different flow components. These are summarized in Table 2. Elements
that are kept constant are the latitude φ, the water depth at the peak of the coastal jet h0, the tidal
parameters Vtide and ω, and the analysis time interval τ.

Table 2. Non-dimensional parameters, their definition, physical meaning, and base case values.

α
cp

U
=

2π/(Tk)
U

ratio of topographic wave speed to jet strength −1.18

δ
(V/2 + Vtide/π)/ω

L
ratio of cross-shelf velocity advective length scale to jet width 1.63

γ
h0/S

L
ratio of shelf width to jet width 2.0

The non-dimensional parameters consider the topographic wave speed relative to the strength
of the coastal jet (α), a cross-shelf velocity advective length scale (the integral of Equation (12) at
x = π/k and y = 0 over half a tidal wave period) relative to the tidal amplitude (δ), and the shelf
width relative to the coastal jet width (γ). We chose these particular combinations of model parameters
because they are based on easily measured quantities and because they reflect the competition of the
relevant physical processes. In particular, α accounts for the relative strength of the two components
of along-shore flow (see Equation (11)). The second non-dimensional parameter, δ, considers the
length scale the material has to move beyond the jet to be effectively mixed with coastal waters. Lastly,
γ accounts for the effectiveness of the shelf width to the jet width in cross-shelf transport.

Each of the non-dimensional parameters is varied over a range centered on the base case, capturing
realistic values for the underlying physical variables. Transport volumes are computed for each case
over three tidal periods and one wavelength interval by varying the numerator or denominator of
each ratio. We have chosen to fix τ, rather than varying it with T, for better comparability. Note that
the wavelength Λ is a function of k, which in turn varies with S and T (Equation (13)):

Λ =
2π

|k| =
4π2h0

S f T
. (16)

Thus, the wavelength changes with α and γ if T and S are varied, respectively.
Of course, not all ten physical parameters are captured by the three non-dimensional ones

investigated, and so, the general parameter space is not completely explored here. Indeed, for each
series, we chose to change the smallest number of physical parameters. One consequence of this
is that α, δ, and γ are not varied completely independently. In particular, γ is linked to both of the
other parameters: when γ is varied by adjusting the numerator (S) while keeping the denominator
(L) constant, it impacts α, because k and hence cp are a function of S. On the other hand, when γ is
varied by adjusting the denominator (L), this changes δ, which is directly a function of L. Varying δ

by adjusting L, of course, has a similar effect on γ. However, α can be varied without impacting γ by
varying T when adjusting the numerator.
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The results of the parameter space exploration are summarized in Figures 5–7, which also
show how the corresponding physical parameters are varied for each experiment series. For those
cases with near-linear dependence over the parameter space considered, linear fits are provided to
quantify the strength of the parameter dependence. Figure 5 shows the two experiment series for α,
which measures the wave speed relative to the jet strength, varying the numerator and denominator
separately. They nearly coincide, with a stronger correspondence than for the other two parameters.
Apparently, this is due to the co-dependency on the other non-dimensional parameters mentioned
above. This confirms that the ratio of the wave speed to jet strength is indeed a controlling parameter
for the cross-shelf transport. In the parameter range explored here, the wave and jet act in opposite
directions, and hence, α < 0. As their respective magnitudes approach each other (α = 1), the strength
of the combined along-shore flow acting as a barrier to cross-shelf transport weakens, allowing
increased transport.

Figure 5. (Left) Cross-shelf transport across the surface Ψ = 0 for a variety of values of α, as defined
in Table 2. The blue data points correspond to changes in the denominator and red data points to
changes in the numerator. Lines show linear fits to the data series separately. (Right, top) Values of
U corresponding to the values of |α| used to derive the blue data points. (Right, bottom) Values of T
corresponding to the values of |α| used to derive the red data points. The black star in all panels shows
the data point for the base case.

The dependency of the transport on δ is more subtle (Figure 6). δ measures the strength of the
cross-shelf advection versus the width of the jet. It is observed that there is a sweet spot maximizing
transport near δ = 1.5. The transport results from particles crossing the velocity gradients at the jet
edge. Generally, for small δ, as the jet is very wide or the cross-shelf advection weak, this process
is inhibited. On the other hand, for very large δ as the jet becomes very narrow relative to the
cross-shelf advection, much of the cross-shelf advection occurs outside the influence of the jet, leading
to only periodic transport. It takes both along- and cross-shelf advective components to generate
advective mixing, both along and across topography in this case. For δ at either extreme, only one
component dominates.
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Figure 6. (Left) Cross-shelf transport across the surface Ψ = 0 for a variety of values of δ, as defined in
Table 2. The blue data points correspond to changes in the denominator and red data points to changes
in the numerator. (Right, top) Values of L corresponding to the values of δ used to derive the blue data
points. (Right, bottom) Values of V corresponding to the values of δ used to derive the red data points.
The black star in all panels shows the data point for the base case.

The trends of transport with γ are considered in Figure 7. γ measures the influence of the shelf
width relative to the influence of the jet width. To make sense of these results, recall that an increasing
γ is accompanied by an increasing δ if L is varied and by an increasing |α| if S is varied (via changes in
cp; Equation (6)). It appears that for this part of the parameter space, these secondary effects dominate.
For the case of constant S and varying L, transport is fairly insensitive to γ, but a slight peak occurs around
γ = 1.8, where δ ≈ 1.5. In contrast, for constant L and varying S, transport decreases with increasing
γ and correspondingly increasing |α|, which leads to a strengthened barrier in the form of along-shore
currents. Note that all the trends considered here are consistent with the fundamental idea that advective
transport relies on a balance between cross-topography and along-topography advection.

Figure 7. (Left) Cross-shelf transport across the surface Ψ = 0 for a variety of values of γ, as defined
in Table 2. The blue data points correspond to changes in the denominator and red data points to
changes in the numerator. Lines show linear fits to the data series separately. (Right, top) Values of
L corresponding to the values of γ used to derive the blue data points. (Right, bottom) Values of S
corresponding to the values of γ used to derive the red data points. The black star in all panels shows
the data point for the base case.
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Lastly, throughout this section, Vtide has been kept constant. However, tidal currents can vary
greatly between geographic locations. Thus, we independently explored the impact of varying Vtide on
the total transport. Predictably, stronger tidal currents were found to result in larger transport. In the
range Vtide ∈ [0.014, 0.033] m/s, transport increased from 0.22 to 0.46 km3, almost linearly with slope
12.7 km3/(m/s) (not shown).

5. Application to the Texas Shelf

To test the conclusion of significant cross-shelf transport due to the three processes captured in
this transport model for a specific case with corresponding observed parameter values, we consider
an example of flow along the Texas Shelf. In general, circulation on the Texas Shelf exhibits a strong
wind-driven seasonal pattern [27–29]. During the winter months (October–March), a high pressure
system typically sets up over Texas, inducing a down-coast wind field (blowing to the southwest, from
Houston to Port Aransas). This wind field generates a down-coast oceanic circulation pattern, in which
advection of buoyant river discharge and Ekman dynamics combine to create a strong (0.5–0.75 cm/s)
down-coast Texas Coastal Current. The downwelling signature of this circulation pattern is often
masked by the homogenization of the water column due to strong wind induced mixing. Winter
months are also characterized by the passage of strong fronts, which enhance such mixing and cause
short-lived coastal current reversals (1–2 days) with higher variability closer to the Texas-Mexico
border (26◦N). In contrast, the summer months (June–August) are characterized by up-coast wind
patterns (wind blowing to the northeast, from Port Aransas to Houston). This up-coast wind pattern
drives a “reversal” of the Texas Coastal Current, causing up-coast flow near the Texas coast. Due to
the reduced strength of summer winds and the passage of fewer fronts, an upwelling circulation
pattern can be observed. The transitional months September–October (up-coast to down-coast) and
April–May (down-coast to up-coast) are characterized by high variability due to instabilities associated
with flow transitions.

In addition to wind-induced circulation, the Texas coast is also influenced by river discharge [30]
and offshore eddies impinging on the coastal zone [31–33]. Freshwater plumes can act as barriers to
cross-shelf transport [34]. High river output has also been linked to increased offshore transport [30].
Offshore eddies in this area are typically between 100 and 300 km in diameter, extend up to 1000 m in
depth, have circulation velocities of a few cm/s, and primarily influence the Texas coastal zone in two
ways: direct impingement on the Texas Shelf or impingement on the Louisiana slope. If impinging
directly on the Texas Shelf, the eddies are capable of overwhelming the ambient circulation pattern
and creating significant cross-topography transport. If impinging on the Louisiana slope, they can
generate topographically controlled slope currents and topographic waves, which travel along the
slope towards Texas [35–41].

Here, we consider a unique dataset of bottom current measurements spanning late-May to
mid-June 2016. This cross-topography array of SeaHorse tilt current meters (TCMs) was deployed
between the 30 m and 200 m isobaths, although most instruments were concentrated in the 50–100 m
depth range (Figure 8a). Despite the relatively short duration of this deployment, the dataset captured
flow that shares several key aspects with our transport model: an approximately 20 km wide,
topographically controlled jet with peak velocity of approximately 7 cm/s is observed to be centered
near the 50 m isobath. The jet is perturbed by a strong seven day oscillation (Figure 8b) with an
approximate amplitude of 10 cm/s, consistent with a bottom-intensified topographic Rossby wave
(the spectrum in Figure 8b was calculated for instrument M7 at 70 m depth but is representative of
all observed spectra). The jet is also perturbed by a weaker (approximately 5 cm/s) higher frequency
oscillation with a period of one day, consistent with a tidal signal (Figure 8b). Note that, contrary to
typical topographically controlled flows, which have shallow water to the right of the jet, here, the jet
is reversed, with shallow water to the left, as is normal for the summertime Texas Shelf circulation.
Furthermore, these observations are bottom current measurements taken 1 m off the bottom. Thus,
the observed shoreward slant of the mean velocity vectors is possibly an Ekman spiral effect.
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(a)

(b)
Figure 8. (a) Locations of the bottom current meters off the Texas coast. Grey lines show isobaths at
50 m intervals, with darker lines at 250 m intervals. Blue arrows indicate the mean flow. (b) Wavelet
analysis at location M7 of the cross-shore current component with (left) the power spectrum as a
function of time and (right) the global power spectrum. The solid black contour indicates where
power becomes significant. The dashed line indicates the cone of influence, where anything “below” is
potentially affected by edge effects.

To model this particular flow, we use the following parameter values: φ = 27.5◦, h0 = 50 m,
S = 0.0012, U = −0.07 m/s, L = 20 km, V = 0.1 m/s, T = 7 days, Vtide = 0.05 m/s, and ω = 1 day−1.
After one tidal period, the transport across Ψ = 0 consists of a per wavelength (Λ = 40.39 km)
volume exchange of 0.38 km3 (Figure 9a). The transport occurs in small pockets along the edge of
the Ψ = 0 surface. Over one wave period (or seven tidal cycles), the transport increases, with a per
wavelength volume exchange of 0.46 km3 (Figure 9b). This suggests there is potential for significant
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background cross-topography transport on the Texas Shelf under normal conditions even without
eddy impingement.

(a)

(b)

(c)

(d)
Figure 9. Cross-shelf transport for the case matching observed parameters for (a) one tidal period
across Ψ = 0, (b) one wave period (seven tidal periods) across Ψ = 0, (c) one tidal period across y = 0,
and (d) two tidal periods across y = 0. Red indicates water masses transported on-shore and cyan
those moved off-shore.
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We return now to the earlier observation that for practical applications, the transport across a
fixed geographic boundary, such as an isobath, may be more relevant. Figure 9c,d show the transport
over y = 0 (the 50 m isobath) for one and two tidal periods, respectively. By this metric, onshore
transport is even more substantial, at 5.55 km3 after one day and 11.11 km3 after two days.

6. Discussion and Conclusions

We presented a simple analytical model to analyze cross-shelf transport by generic shelf/slope
dynamical processes. It consists of a linear superposition of a topographically controlled jet,
a topographic Rossby wave, and a tidal oscillation. Despite its simplicity, the resulting transport
characteristics are complex. Most importantly, the analysis demonstrates the potential for significant
background cross-topographic transport under what are generally considered “normal” periodic
shelf/slope conditions, without requiring the introduction of eddy impingement, frontal instabilities,
or atmospheric forcing. In fact, the transport magnitude estimated here is comparable to that found in
previous studies to result from eddy-shelf interactions [1].

To further probe these transport characteristics, we explored the parametric dependence of the
transport on several key system parameters α, δ, and γ, whose definitions are designed to capture the
main processes at work while relying on easily observable quantities. Due to the number of parameters
involved in our model, the non-dimensional parameters chosen are not completely independent,
but do illustrate how the trends in transport depend on these common ocean observables.

Each flow component independently will not result in any aperiodic cross-topography transport.
The jet is directed along isobaths, and each individual oscillation is periodic, so particle trajectories
will return to their initial position once every period. There is a slight drift due to the topographic
slope, but that is not a significant factor. A combination of tidal oscillation and the Rossby wave
will only produce reversible transport in a period that is a multiple of the two underlying periods.
The combination of a tidal oscillation and a coastal jet will also result in particle trajectories that
return to their initial depth contour (plus downstream advection) because the velocity components
are orthogonal and the tidal signal is modeled as independent of location. It is the combination of
the along-shore current with a spatially dependent cross-shore component that results in appreciable
cross-topographic transport and consequent potential for mixing between coastal and open ocean
water masses. Without the tidal component, however, that is in the case with only a jet and topographic
wave, such transport across the y = 0 line is somewhat artificial: in the moving reference frame,
the streamfunction is constant as in Figure 2b, so that there is no cross-shelf transport across the Ψ = 0
isoline. Thus, the combination of all three processes is necessary to produce true open coastal ocean
mixing. As the tidal oscillation and stationary flow patterns are not orthogonal, there will be aperiodic
transport. The effect is a time-dependent streamfunction field that is aligned with the relevant invariant
manifolds only once per tidal cycle, as illustrated in Figure 3, leading to particles not returning to their
initial positions after a tidal or wave period (Figure 4).

The transport volume is controlled by the interaction between the three processes with the
topographic conditions. This is shown in the parameter sensitivity study. Parameter α considers the
ratio of the topographic wave speed to the jet strength (Figure 5). As the wave speed and jet speed
get closer to balancing each other, the transport increases. This occurs since the jet and wave speed
counteract each other, and when neither dominates, the strength of the barrier die to along-shore
currents is weakened. Parameter δ considers the ratio of the cross-shelf velocity advective length scale
to the jet width (Figure 6). A sweet spot was identified in which the cross-stream and along-stream
advective components couple to result in a maximum transport. Parameter γ considers the ratio of the
shelf width to the jet width (Figure 7). However, the secondary effects of accompanying changes in α

and δ were found to dominate. The impact of increased tidal strength was tested in addition to the
non-dimensional parameters and found to be associated with increased transport.

As a specific example, a transport analysis for the Texas coast is presented, using parameters
drawn from observational data. The key features of this observational dataset are a topographically
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controlled jet, a one day oscillation consistent with a tidal signal, and a seven day oscillation, consistent
with a topographic Rossby wave. The application of our model to these observational conditions
suggests that a significant amount of cross-topographic transport (open-ocean coastal-ocean mixing)
can occur under normal shelf conditions. This has implications for larval distribution, oil spill response,
and other coastal management issues, as the absence of eddies or density filaments will not guarantee
isolation of on-shore and off-shore waters.

In summary, it was shown that there exists a fundamental background open ocean coastal-ocean
connectivity pathway due to the interactions of a topographically controlled jet, a topographic Rossby
wave, and a tidal oscillation. An analytic model of such systems was provided, and a parameter study
was conducted to explore the sensitivity of transport to several key ocean observables. The application
of the model to the Texas Shelf demonstrated significant transport and mixing potential under these
basic flow conditions. The parameter space exploration suggests that this finding will vary across
other regions of the ocean, but it also enables straightforward transport predictions based on a few
observable characteristics. It is the authors’ hope that confirmation of this advective open-ocean
coastal-ocean transport pathway will help inform coastal ocean management decisions and provide
guidance for future field programs targeting coastal transport processes.
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