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ABSTRACT
A common interpretation is presented for four powerful modal decomposition techniques: “proper orthogonal decomposition,” “smooth
orthogonal decomposition,” “state-variable decomposition,” and “dynamic mode decomposition.” It is shown that, in certain cases, each
technique can be interpreted as an optimization problem and similarities between methods are highlighted. By interpreting each technique
as an optimization problem, significant insight is gained toward the physical properties of the identified modes. This insight is strengthened
by being consistent with cross-multiple decomposition techniques. To illustrate this, an inter-method comparison of synthetic hypersonic
boundary layer stability data is presented.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5144429., s

I. INTRODUCTION

Modal decomposition techniques are powerful tools for the
investigation of the dynamics underlying various systems. These
decomposition techniques tend to fall into one of the two cate-
gories: (a) techniques that optimally account for data variance, i.e.,
reproduce the dataset with a minimal number of modes, and (b)
techniques that seek to identify dynamically relevant (or physical)
modes without requiring extensive knowledge of the system. As
most modal decomposition techniques are statistical in nature, cau-
tion must be practiced when attempting the latter. In such cases,
additional constraints are applied to the statistical methods in an
effort to isolate the physically relevant aspects of the data. In the
end, the user must interpret the identified modes based on the

statistical method used, data preprocessing performed, and con-
straints applied.

When performing a modal analysis, it is of great importance
to have a fundamental understanding of the chosen method and
ideally, this understanding should be consistent across a num-
ber of available methods to build intuition. This manuscript pro-
vides a common interpretation of four popular (and powerful)
modal decomposition techniques; the so-called “Proper Orthogonal
Decomposition” (POD1,2), “Smooth Orthogonal Decomposition”
(SOD3), “State-Variable Decomposition” (S-VD4,5), and “Dynamic
Mode Decomposition” (DMD6), thereby allowing for improved
mode interpretation and cross-method comparison.

Note that the treatments of POD, SOD, and S-VD given below
are relatively standard and can be found in several other references.
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Here, the works of Chelidze and co-workers3,7–10 and the recent
work of Kuehl11 are followed. There are also many treatments of
DMD available in the literature, which usually focus on the Krylov
subspace interpretation. Here, the focus will be on several works of
Schmid and co-workers6,12,13 and Kutz.14 The main contribution of
the present work is a unified (though only for restricted cases) inter-
pretation of POD, SOD, S-VD, and DMD, in which each method can
be interpreted as a constrained maximization problem.

II. BACKGROUND
In what follows, we consider the decomposition of a data matrix

X = [x1, x2, . . . , xn]T ∈ Rn×m, which contains multivariate time series
of measurements {xi ∈ Rm×1

}
n
i=1 taken at m different spatial loca-

tions at n time instants. It is usually assumed that each column of X
has zero mean. Alternatively, we make each column of X zero-mean
as part of preprocessing. In particular, we are looking for separation
into temporal coordinates and spatial modes,

X =
m

∑

k=1
qkϕ

T
k = QΦ

T , (1)

where ϕk ∈ Rm×1 represent spatial modes that are columns of matrix
Φ ∈ Rm×m and qk ∈ Rn×1 represent the corresponding temporal
coordinates that constitute the columns of matrix Q ∈ Rn×m.

If the spatial modes are orthonormal, then one can obtain the
time coordinates as follows:

Q = XΦ or qi = Xϕi. (2)

On the other hand, if they are just linearly independent unit vectors,
which are not orthogonal, denoting adjoint modes Ψ = Φ−T yields

Q = XΦ−T = XΨ ⇒ qi = Xψi. (3)

Therefore, ψi and ϕi are biorthonormal (i.e., ΨTΦ = I, or ψT
i ϕj = δij),

and we can write X = XΨΦT .

A. Proper orthogonal decomposition
Let us begin with the POD technique, which is also known as

“Empirical Orthogonal Functions” (EOFs), “Principle Component
Analysis” (PCA), and “Karhunen–Loève Decomposition” depend-
ing on the field of study. Despite the differences in the name, almost
all implementations of the method are the same. A Singular Value
Decomposition (SVD) is performed on the data matrix X, which
decomposes the data into statistical normal modes, which optimally
account for the data’s amplitude variance and also allows for a con-
venient geometric interpretation. When considering a cloud of par-
ticles in a D dimensional space, the SVD of this cloud yields a set
of D singular values and singular vectors. The singular values reflect
the length of the semi-axes of an ellipsoid encompassing the cloud
of particles, with the corresponding directions given by the singu-
lar vectors. While this interpretation is insightful, the essence of
the technique is most transparent when formulated as a constrained
maximization problem. POD fundamentally considers those modes,
which maximize the amplitude variance of the projection,

max
ϕ
∥Xϕ∥2 with ϕTϕ = 1, (4)

or the corresponding Rayleigh’s quotient

max
ϕ
{λ(ϕ) =

∥Xϕ∥2

∥ϕ∥2 }⇒ max
ϕ
{λ′(ϕ) =

ϕTΣxxϕ
ϕTϕ

}, (5)

where Σxx is the covariance matrix of X, ϕ ∈ Rm×1, and λ = (n − 1)λ′.
Variational techniques may be applied to obtain the eigenvalue
problem Σxxϕi = λiϕi, or correspondingly, the SVD expression of X
= UCΦT . Note that the columns of unitary matrix Φ are eigenvec-
tors of Σxx, and Q = UC, where U and C are unitary and rectangular
diagonal matrixes, respectively. From this formulation, it is clear that
POD is an amplitude based projection, which results in a sequence
of orthonormal modes, ϕi, that optimally account for the amplitude
variance of X in the corresponding qis.

B. Smooth orthogonal decomposition
The idea of SOD was first explored by Chatterjee et al.15 and

later formalized by Chelidze and Zhou3 in the context of nonlinear
vibrations, who provided a thorough treatment, including compu-
tational details and its many beneficial properties.7–10 Again, the
current work will simply highlight key aspects of the method. SOD
considers the constrained maximization problem

max
ψs
∥Xψs∥

2 subject to min
ψs
∥Vψs∥

2, (6)

where V is the temporal derivative of X. The corresponding general-
ized Rayleigh’s quotient is

max
ψs
{λs =

∥Xψs∥
2

∥Vψs∥2 }⇒ max
ψs
{λs =

ψT
s Σxxψs

ψT
s Σvvψs

}, (7)

where Σvv is the covariance matrix of V and λs are the smoothed
orthogonal values (SOVs). Variational techniques may again be
applied and result in the generalized eigenvalue problem Σxxψs ,i
= λs ,iΣvvψs ,i or correspondingly a generalized singular value decom-
position (GSVD) problem for X = UsCsΦT

s and V = WsSsΦT
s . Gen-

eralized singular vectors and eigenvectors are related by Ψ−1
s = ΦT

s ,
where Ψs = [ψs,1,ψs,2, . . . ,ψs,m] and XΨs = Qs. It follows that SOD
considers those modes that maximize amplitude variance of projec-
tion, while at the same time being as smooth in time as possible.
As nature tends to behave in a “smooth” fashion, this “smoothness”
property has been shown to be more physically relevant than the
amplitude only based POD analysis.8

It should be noted that POD, by definition, identifies orthog-
onal modes, while SOD results in non-orthogonal modes. This
is of particular importance to non-self-adjoint problems in which
the physical mechanisms that govern the system dynamics are
not orthogonal. The columns of matrix Qs = UsCs contain time
coordinates of the corresponding modes in Φs, and since Us
is unitary and Cs is diagonal, time coordinates remain orthog-
onal. This probably motivates the use of “orthogonal” in the
name SOD. Hence, SOD has only temporal orthogonality (uTs,ius,j
= δij), while POD has both temporal and spatial orthogonality
(uTi uj = ϕTi ϕj = δij).

While Ψs = Φ−Ts , we can also determine eigenvectors with-
out taking an inverse of singular vectors as Ψs = (XTX)−1ΦsC2

s
= (n − 1)Σ−1

xx ΦsC2
s . That is, the SOD technique immediately gives
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both direction (Φs) and projection (Ψs) eigenvectors satisfying
the biorthonormal condition. While this is a straightforward
result, due to the lack of physical interpretation, this property
has not been exploited. In particular, this allows for experi-
mental “receptivity” studies for the investigation of how arbi-
trary disturbances excite non-orthogonal modes of oscillation in a
system.

C. Dynamic mode decomposition
Recently, the “Dynamic Mode Decomposition” technique,

developed by Schmid,6 has been popularized. The work of Schmid13

will provide a starting point of our treatment. The DMD method
considers the mapping of data snapshot X1 = [x1, x2, . . . , xn] to X2 =

[x2, x3, . . . , xn+1], where X1 = XT
∈ Rm×n as used in SOD/POD and

X2 is one time sample delayed version of X1 (there are also general-
izations for the time-delay greater than one sample). In the case of
n >m, it considers the following mapping:

X2 = AX1 + reT , (8)

where A ∈ Rm×m, r ∈ Rm×1 is the vector of residuals, and e ∈ Rn is a
zero vector except the last term en = 1. Then, A is chosen such that
it minimizes the residual vector’s norm in the least squares sense,
A = X2XT

1 (X1XT
1 )
−1, and the DMD modes come from the eigen-

decomposition of A. Alternatively, using QR decomposition of
XT

1 = Q1R1, we get A = X2Q1R−T1 . Note that since A
may not be symmetric, we expect complex eigen-decompositions
of A.

When n < m, as is frequently a case in flow data, or when rank
of X1 is smaller than m, the matrix A cannot be determined uniquely
since X1XT

1 is rank deficient. Then, A is chosen such that each of the
snapshots in X2, {xi}n+1

i=2 , can be written as a linear combination of
snapshots in X1, {xi}ni=1. Since most of the snapshots in both datasets
are the same except for the first and last snapshots in X1 and X2,
respectively, Eq. (8) is rewritten as

X2 = X1S + reT , (9)

where S ∈ Rn×n is the companion matrix of A,

S =

⎛

⎜
⎜
⎜
⎜
⎜

⎝

0 0 ⋯ 0 a1
1 0 ⋯ 0 a2
0 1 ⋯ 0 a3
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 an

⎞

⎟
⎟
⎟
⎟
⎟

⎠

. (10)

Using the QR decomposition of X1 = Q1R1, we find a = R−1
1 QT

1 xn+1.
Now, if yd ,i is an eigenvector of S then X1yd ,i ≅ ϕd ,i is an approxima-
tion of an eigenvector of A, and eigenvalues of S are the approxima-
tions of eigenvalues of A.

Alternatively, we can assume X2 to be a linear combination of
columns in Φ from the SVD of X1 = XT = ΦCUT . Then, one can
determine a similarity transform of A as S̃ = ΦTAΦ = ΦTX2UC−1.
Consequently, the eigenvalues of A are approximated by the eigen-
values of S̃, λd ,i, and the corresponding eigenvectors are given by
Φ ỹd ,i ≅ ϕd ,i, where ỹd ,i are the eigenvectors of S̃.

D. State-variable decomposition
Shortly after SOD, and recognizing that it cannot provide

complex modes, S-VD was proposed to identify complex vibration
modes and the associated damping ratios and frequencies of the
state-variable model of a multi-degree-of-freedom linear system.5

In this approach, S-VD is accomplished by solving an asymmetric
generalized eigenvalue problem,

Σxvψv = λvΣxxψv , (11)

where Σxx is a covariance matrix of a free-vibration time series of
state-variables in X, and Σxv is the corresponding cross-covariance
matrix betweenX and its time derivativeV. Then, the complex vibra-
tion modes are approximated by the columns of ΦT

v = Ψ−1
v and the

corresponding eigenvalues λv approximate −ζjωj±iωj
√

1 − ζj, where
ζ j and ωj are the damping ratios and the natural frequencies of the
jth mode.

When comparing SOD and S-VD as applied to the free-
vibrations of a linear multi-degree-of-freedom system, both give
the same modes for undamped or proportionally damped systems.
For generally damped systems, the SOD results in the eigenval-
ues that come in closely spaced pairs, and we conjecture (and
provide an explicit example later) that the corresponding pair of
eigenvectors spans approximately the same planar subspace of the
state space as the complex conjugate pairs of eigenvectors from
the S-VD.

The S-VD can also be derived from these simple equations,

X = QvΦT
v , and V = Ẋ = Q̇vΦT

v = QvΛvΦT
v , (12)

where Λ is a companion matrix of temporal differential operator and
it is a diagonal matrix since every column in Qv is described by a sin-
gle exponential response function exp[(−ζjωj ± iωj

√

1 − ζj)t]. Now,

remembering that Ψ−1
v = ΦT

v , we get

XΨv = Qv and VΨv = QvΛv . (13)

Thus,

VΨv = XΨvΛv . (14)

Now, if we multiply both sides from the left by Ψ∗vXT ,

Ψ∗vX
TVΨv = Ψ∗vX

TXΨvΛv , (15)

or we obtain the S-VD,

XTVΨv = XTXΨvΛv . (16)

III. ALTERNATE INTERPRETATIONS
We have shown that the optimization interpretation is a physi-

cally insightful approach. In the following, we interpret limited cases
of the DMD as an optimization problem.

A. DMD as an optimization
Fundamentally, DMD considers the adjoint eigenvalue prob-

lem of A, ψ∗dA = λ
∗
dψ
∗
d , for n > m, and the eigenvalue problem of
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S, Syd = λdyd for n < m. Using relationship (8) and (9), these are
equivalent to the generalized eigenvalue problems

ψ∗dX2 = λ∗dψ
∗
dX1 and X2yd = λdX1yd. (17)

The former of Eq. (17), upon multiplication from the right by XT
1 ψd

or XT
2 ψd, or by taking its magnitude, yields

ψ∗dX2XT
1 ψd = λ

∗
dψ
∗
dX1XT

1 ψd,

ψ∗dX2XT
2 ψd = λ

∗
dψ
∗
dX1XT

2 ψd,

ψ∗dX2XT
2 ψd = (λ

∗
d λd)ψ

∗
dX1XT

1 ψd.

(18)

Multiplying the first of Eq. (18) by λd and adding the second yields

ψ∗d [λ
∗
dX1XT

2 + λdX2XT
1 ]ψd = (λdλ

∗
d )ψ

∗
dX1XT

1 ψd + ψ∗dX2XT
2 ψd. (19)

Utilizing the third of Eq. (18) leads to

ψ∗d [λ
∗
dX1XT

2 + λdX2XT
1 ]ψd = 2ψ∗dX2XT

2 ψd. (20)

For the general case of DMD, complex λd and ψd, we can proceed
no further with the optimization analysis as was done for POD and
SOD. However,

1. Case 1
For the case of purely exponentially growing disturbances (i.e.,

non-propagating, exponentially growing disturbances with purely
real λd and ψd), Eq. (20) allows for the DMD to be formulated as

λd(R) =
2ψ∗dX2XT

2 ψd

ψ∗d [X1XT
2 + X2XT

1 ]ψd
. (21)

Noting that the quantities [X1XT
2 + X2XT

1 ], X1XT
1 , and X2XT

2 are
all Hermitian, a Rayleigh quotient analysis may again be applied.
In this case, it is found that the DMD satisfies the corresponding
optimization problems

max
ψd
∥

√

2 XT
2 ψd∥

2 subject to

min
ψd
∥

√

[X1XT
2 + X2XT

1 ]
T
ψd∥

2. (22)

It follows that for the special case of purely exponentially growing
disturbances, the DMD seeks to identify those modes, which maxi-
mize their modal projection onto the time-shifted data matrix while
minimizing their projection onto the covariance matrix of the data
and time-shifted data.

2. Case 2
For the case of purely oscillatory, neutral disturbances (i.e.,

non-propagating nor exponentially growing disturbances with
purely imaginary λd and real ψd), the DMD may be formulated
by considering Eq. (17) and multiplying them by their complex

conjugate transpose from the right and left, respectively, which
yields

ψ∗dX2XT
2 ψd = (λ

∗
d λd)ψ

∗
dX1XT

1 ψd (23)

and

y∗dX
T
2 X2yd = (λ

∗
d λd)y

∗
dX

T
1 X1yd, (24)

or

∣λd∣
2
=

ψ∗dX2XT
2 ψd

ψ∗dX1XT
1 ψd

and ∣λd∣
2
=

y∗dX
T
2 X2yd

y∗dX
T
1 X1yd

. (25)

This “magnitude” DMD decomposition can be solved by the follow-
ing generalized eigenvalue problems:

Σ2ψd = ∣λd∣
2Σ1ψd and Γ2yd = ∣λd∣

2Γ1yd, (26)

where Σi = XiXT
i /(n − 1) and Γi = XT

i Xi/(m − 1) are temporal and
spatial covariance matrices of Xi, respectively. It is observed that the
magnitude of the DMD can also be interpreted as the generalized
eigenvalue problem (for ∣λd∣

2) of the map-shifted data correlation
matrix (Σ2 or Γ2) and the original data correlation matrix (Σ1 or
Γ1). Furthermore, the magnitude of the DMD problem (for purely
oscillatory, neutral disturbances) for n >m can be formulated as the
constrained maximization problem

max
ψd
∥XT

2 ψd∥
2 subject to min

ψd
∥XT

1 ψd∥
2, (27)

or if n <m,

max
yd
∥X2yd∥

2 subject to min
yd
∥X1yd∥

2. (28)

It follows that for the special case of purely oscillatory, neutral dis-
turbances, the DMD seeks to identify those modes, which maxi-
mize their modal projection onto the time-shifted data matrix while
minimizing their projection onto the original data matrix.

IV. CONNECTIONS BETWEEN METHODS
As stated in Introduction, when performing a modal analy-

sis, it is of great importance to have a fundamental understanding
of the chosen method and, ideally, this understanding should be
consistent across a number of available methods to build intuition.
Here, we outline connections between the methods considered in
this manuscript.

A. Connecting SOD to S-VD
Considering the response of a multi-degree-of-freedom linear

state-space model, SOD gives its real-valued decomposition

X = QsΦT
s , and V = Q̇sΦT

s = QsΓsΦT
s , (29)

where Γs = diag(γs,i) is a diagonal matrix. Since the columns
of Qs are orthogonal by definition, their time derivatives are also
orthogonal to each other. Using Ψ−1

s = ΦT
s , we can write

VΨs = XΨsΓs ⇒ Vψs = γsXψs. (30)
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Now, multiplying both sides from the left by their transpose, we get

ψT
s V

TVψs = γ2
sψ

T
s X

TXψs, (31)

or using the generalized Rayleigh’s quotient form,

γs(ψs)
2
=
ψT
s Σvvψs

ψT
s Σxxψs

, (32)

which has the same stationary values as SOD if we let λs = γ−2
s . It

is clear that if the system has real vibration modes, then SOD and

S-VD are directly related to Γs = Λv = Λ
− 1

2
s .

However, when vibration modes are complex, we can use
Eq. (29) to write

Vψv = λvXψv , (33)

and multiplying both sides by their complex conjugate transpose, we
get

ψ∗vV
TVψv = λvλ∗vψ

∗
vX

TXψv , (34)

or using the generalized Rayleigh’s quotient form,

∣λv(ψv)∣
2
=
ψ∗vΣvvψv

ψ∗vΣxxψv
, (35)

which now is a real-valued quotient and has its stationary values at

γ2
s = λ

−1
s = min

ψv

ψ∗vΣvvψv

ψ∗vΣxxψv
= min

ψs

ψT
s Σvvψs

ψT
s Σxxψs

. (36)

We expect γs to be near the corresponding ∣λv ∣ and reflect the mini-
mal ratio between the velocity and the displacement magnitudes.

B. Connecting S-VD to DMD
Again, considering the adjoint eigenvalue problem of A, ATψd

= λdψd, and denoting XT
2 = X + V , where V can be considered as

the time derivative of X or change in the data matrix, we can rewrite
Eq. (8) as

X + V = XAT + erT . (37)

Dropping the residual, multiplying Eq. (37) by ψd, and using the
adjoint eigen-decomposition of A, we get

(X + V)ψd = λdXψd → Vψd = (λd − 1)Xψd. (38)

Multiplying the right expression of Eq. (38) from the left by ψ∗dV
T

yields

ψ∗dV
TVψd = (λd − 1)ψ∗dV

TXψd (39)

or

Σvvψd = (λd − 1)Σvxψd. (40)

Therefore, S-VD’s eigenvectors are related to the adjoint eigenvec-
tors of the DMD matrix A, ψd ≅ ψv , and the corresponding eigen-
values are related as λd ≅ λv + 1. If V = X2 − X1, then S-VD and
DMD modes are exactly the same.

C. Connecting SOD to “magnitude” DMD
Again, considering the adjoint eigenvalue problem of A, ATψd

= λdψd, and denoting XT
2 = X + V , where V can be considered as

the time derivative of X or change in the data matrix, we can rewrite
Eq. (8) as

X + V = XAT + erT . (41)

Dropping the residual, multiplying Eq. (41) by ψd, and using the
adjoint eigen-decomposition of A, we get

(X + V)ψd = λdXψd → Vψd = (λd − 1)Xψd. (42)

Multiplication of the right expression of Eq. (42) by its complex
conjugate transpose from the left yields

ψ∗dV
TVψd = ∣λd − 1∣2ψ∗dX

TXψd (43)

or re-writing it in a generalized Rayleigh’s quotient form

∣λd − 1∣2 =
ψ∗d Σvvψd

ψ∗d Σxxψd
. (44)

Applying variational techniques to Eq. (44), we get Σvvψd

= ∣λd − 1∣2Σxxψd. Therefore, SOD’s eigenvectors are related to the
adjoint eigenvectors of the DMD matrix A, ψd ≅ ψs, in the “magni-
tude” interpretation. The generalized Rayleigh’s quotients for SOD
[Eq. (7)] and magnitude-type DMD [Eq. (44)] are the inverse of each
other. Thus, SOD solves an adjoint magnitude DMD problem for
n >m as the constrained maximization problem

max
ψd
∥(XT

2 − X
T
1 )ψd∥

2 subject to min
ψd
∥XT

1 ψd∥
2, (45)

or if n <m,

max
yd
∥(X2 − X1)yd∥

2 subject to min
yd
∥X1yd∥

2. (46)

In fact the GSVD solution to SOD is the same as the magnitude of
DMD if one considers the velocity matrix as V = XT

2 − XT
1 (for-

ward difference approximation for velocity). Equations (45) and
(46) show that DMD’s left- and right-hand eigenvectors approxi-
mate SOD eigenvectors ψs ≅ ψd and ϕs ≅ ϕd, respectively, and the
corresponding eigenvalues λs ≅ ∣λd − 1∣−2.

It is clear from this interpretation that magnitude DMD iden-
tifies modes associated with the varying component of the data.
Equations (45) and (46) show that DMD considers those modes
that maximize projection onto the variable part of the flow while
minimizing projection onto the flow field itself. This, of course,
is consistent with Eqs. (27) and (28) in which modes are found
that maximize amplitude variance projection on the map-shifted
data while minimizing amplitude variance projection on the original
data.
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V. EXAMPLE: SYNTHETIC DATA OF HYPERSONIC
BOUNDARY LAYER INSTABILITY

To illustrate the above modal decomposition properties, we
now consider a synthetic dataset relevant to hypersonic bound-
ary layer instability. Note that numerous variants of each decom-
position technique exist in the literature (especially POD); how-
ever, here, we choose to focus on the fundamental nature of each
method, as described above. Flow over a flared cone at Mach 6
(Fig. 1, specifically at the Mach 6 Purdue Quiet Tunnel conditions)
is known to exhibit laminar flow breakdown that is dominated by
Mack’s second-mode instability.16,17 Second modes are thought to
be trapped acoustic waves, which resonate within a thermoacoustic
impedance well formed between the vehicle wall and the maximum
boundary layer density gradient, with thermoacoustic Reynolds
stresses providing the fundamental energy source.18–20 As second-
mode waves behave as wave packets (finite-frequency-bandwidth
disturbances) in the boundary layer,21–23 they exhibit a nonlinear
breakdown physics that is particularly relevant to our investigation:
(1) The primary 300 kHz second-mode wave packet grows linearly.
(2) As the primary wave packet amplitude grows, the onset of non-
linearity is indicated by the growth of a 600 kHz wave packet first
harmonic. (3) As the first harmonic grows, higher harmonics are
generated, and a feedback onto the primary wave packet from the
first harmonic generates spectral broadening, which leads to the gen-
eration of a low-frequency wave packet disturbance in the boundary
layer.24,25 Thus, at different stages of nonlinear breakdown, three
(or more) distinctly separated frequency disturbances are present
with either distinct amplitude separation (during early stages of non-
linear development) or similar amplitudes (during late stages of

FIG. 2. NPSE root-mean-square of the disturbance amplitude vs the streamwise
distance. Note: 300 kHz, 270 kHz, and 330 kHz—primary disturbance and its side
lobes, respectively; 600 kHz, 540 kHz, and 660 kHz—first harmonic and side lobe
harmonics, respectively; 900 kHz, 810 kHz, and 990 kHz—second harmonic and
side lobe second harmonics, respectively; and MFD—mean flow distortion.

nonlinear breakdown). This is illustrated in Fig. 2, which shows
Nonlinear Parabolized Stability Equation (NPSE) boundary layer
stability calculations on a Mach 6 flared cone under Purdue Quiet
Tunnel conditions.

FIG. 1. Mach contours of a Mach 6 Pur-
due flared cone.
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As the purpose of this manuscript is the investigation of modal
decomposition and the example test case described above is sim-
ply to motivate our choice of synthetic data, we do not provide a
detailed description of the calculations. For details of the numeri-
cal calculations (grid, flow parameters, etc.), identical to those used
here, the interested reader is referred to Refs. 17 and 24. In gen-
eral, basic state flow fields were calculated using US3D (a premiere
hypersonic flow solver26–28) and stability calculations of this basic
flow state were conducted with the JoKHeR NPSE solver.23,29 The
NPSE output provides wall-normal profiles of the complex distur-
bance shape functions, ϕ(y) = ϕr(y) + iϕi(y), frequencies of each
disturbance, and amplitudes of the disturbances along the length

of the cone. From this output, we construct our synthetic dataset
as follows:

Case 1: Pure Oscillation→ Real(ϕ), Imaginary(ω),

ϕT(y) =
3

∑

j=1
Ajϕj

r(y)e
ωjt for t = [0,T], (47)

where T is the observation time, ϕ1
r(y) corresponds to the 300 kHz

second-mode, ϕ2
r(y) represents harmonics, ϕ3

r(y) corresponds
to the 30 kHz low-frequency disturbance, and Aj corresponds
to the disturbance amplitude. Data will be generated for A1
> A2 > A3, corresponding to the early stage nonlinearity, and

FIG. 3. Pure oscillations of the variable amplitude. POD (a) and SOD (b): spectra (left), mode shapes (middle), and amplitude coefficients (right). DMD (c): spectra (left) and
mode shapes (right). Synthetic data input mode shapes are shown with open circles and decomposition mode shapes are shown with dashed lines. Mode shape are plotted
against the y-axis nondimensionalized by the boundary layer length scale.
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A1 ≈ A2 ≈ A3, corresponding to the late stage nonlinear break-
down. In this case, disturbance shape functions are allowed to purely
oscillate only.

Case 2: Propagating Oscillation→ Complex(ϕ), Imaginary(ω),

ϕT(y) =
3

∑

j=1
Aj(ϕj

r(y) + iϕj
i(y))e

ωjt for t = [0,T]. (48)

Again, data will be generated for A1 > A2 > A3, corresponding to
the early stage nonlinearity and A1 ≈ A2 ≈ A3, corresponding to
the late stage nonlinear breakdown. In this case, disturbance shape
functions will be allowed to oscillate with phase propagation in the
y-direction.

Case 3: General→ Complex(ϕ), Complex(ω),

ϕT(y) =
3

∑

j=1
Aj(ϕj

r(y) + iϕj
i(y))e

ωjt for t = [0,T]. (49)

Again, data will be generated for A1 > A2 > A3, corresponding to the
early stage nonlinearity and A1 ≈ A2 ≈ A3, corresponding to the late
stage nonlinear breakdown. In this case, disturbance shape functions
will be allowed to oscillate with phase propagation in the y-direction
and experience exponential growth in time.

For test cases with different amplitude disturbances, A2 = 1,
A1 = 3A2, and A3 = 0.33A2 are chosen. The disturbance frequen-
cies are set to ω1 = 0.1, which represents the primary mode insta-
bility, ω2 = 0.5, which represents the harmonics, and ω3 = 0.01,

FIG. 4. Pure oscillations of the constant amplitude. POD (a) and SOD (b): spectra (left), mode shapes (middle), and amplitude coefficients (right). DMD (c): spectra (left) and
mode shapes (right). Synthetic data input mode shapes are shown with open circles and decomposition mode shapes are shown with dashed lines. Mode shapes are plotted
against the y-axis nondimensionalized by the boundary layer length scale.

AIP Advances 10, 035225 (2020); doi: 10.1063/1.5144429 10, 035225-8

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

which represents the low-frequency content. For the cases with
exponential growth, growth rates are set to ω1 = 3/T, ω2 = 2/T, and
ω3 = 1/T.

A. Test case results
1. Pure Oscillation: Real(ϕ), Imaginary(λ)

Modal decomposition of the “pure oscillation” synthetic dataset
can be seen in Fig. 3, for the variable amplitude disturbance case,
and in Fig. 4, for the constant amplitude disturbance case. As
expected, all three decomposition techniques capture the modal
structure fairly well. Notice that POD has identified that there
are three dominant modes contributing to the signal, but slight

contamination between the specific disturbance profiles is clear
from consideration of the amplitude coefficients. SOD removes this
contamination via its ability to partition signal variance based on
both the amplitude and the time scale of the disturbance. DMD
shares the frequency isolation properties of SOD and behaves sim-
ilarly to SOD. It is observed that the three lowest frequency DMD
modes reproduce the modal structures well and only a small amount
of cross-contamination is observed with the higher-frequency
modes.

The above properties of the three modal decomposition tech-
niques are emphasized in the constant amplitude case (Fig. 4).
Notice that POD continues to identify three dominant modes, but
as POD is an amplitude based decomposition, it can no longer

FIG. 5. Propagating oscillations of the variable amplitude. POD (a) and SOD (b): spectra (left), mode shapes (middle), and amplitude coefficients (right). DMD (c): spectra
(left) and mode shapes (right). Synthetic data input mode shapes are shown with open circles and decomposition mode shapes are shown with dashed lines. Mode shape
are plotted against the y-axis nondimensionalized by the boundary layer length scale.
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distinguish the specific disturbance structure. SOD and DMD, on
the other hand, are sensitive to the frequency content and con-
tinue to identify disturbance structure well, though DMD modes
do contain a slightly larger amount of cross-contamination with
higher-frequency modes.

A note concerning mode selection should be pointed out. POD
and SOD possess the convenient property of optimally decompos-
ing signal variance. This allows one to interpret the relative impor-
tance of the identified modes via their singular values. While DMD
does possess aspects of optimization, as described above, much
of this interpretation is lost when considering the DMD spectra
and it can be difficult to identify the relevance of the individual
modes.

2. Propagating Oscillation: Complex(ϕ), Imaginary(λ)

Modal decomposition of the “propagating” synthetic dataset
can be seen in Fig. 5, for the variable amplitude disturbance case
and in Fig. 6, for the constant amplitude disturbance case. All
three decompositions now identify 6 dominant mode shapes. As
conjectured above, each physical mode is now associated with
a pair of decomposed modes. A pair of modes is required to
account for the phase propagation of the physical disturbances.
This is particularly clear when considering the amplitude coef-
ficients of the SOD decomposition or the complex conjugate
pairs in the DMD spectrum. POD continues to represent the
physical signal with an optimal number of statistical modes,

FIG. 6. Propagating oscillations of the constant amplitude. POD (a) and SOD (b): spectra (left), mode shapes (middle), and amplitude coefficients (right). DMD (c): spectra
(left) and mode shapes (right). Synthetic data input mode shapes are shown with open circles and decomposition mode shapes are shown with dashed lines. Mode shapes
are plotted against the y-axis nondimensionalized by the boundary layer length scale.
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but is unable to isolate individual physical modes. As SOD
sorts modes based on both the amplitude and the time scale,
groupings of singular values identify disturbances operating on
similar time scales and thus, disturbance pairs are straightfor-
ward to identify. Note that both SOD and DMD continue to
successfully isolate the physical mode structure of the input
disturbances.

3. General: Complex(ϕ), Complex(λ)
Modal decomposition of the “general” synthetic dataset can be

seen in Fig. 7, for the variable amplitude disturbance case, and in

Fig. 8, for the constant amplitude disturbance case. All the general
properties of the above studies persist in this case. POD contin-
ues to identify statistically optimal modes, but lacks the ability to
isolate the physical input disturbances. Both SOD and DMD con-
tinue to successfully isolate the physical mode structure of the input
disturbances. It is interesting to note that SOD is able to unambigu-
ously identify not only the physical structure of propagating distur-
bances, but also capture the exponential growth of the disturbance
via the amplitude coefficient. While DMD also identifies the physi-
cal structure of propagating disturbances and there is indication of
exponential growth behavior, there remains ambiguity concerning
the actual exponential growth rates.

FIG. 7. Exponentially growing and propagating oscillations of the variable amplitude. POD (a) and SOD (b): spectra (left), mode shapes (middle), and amplitude coefficients
(right). DMD (c): spectra (left) and mode shapes (right). Synthetic data input mode shapes are shown with open circles and decomposition mode shapes are shown with
dashed lines. Mode shapes are plotted against the y-axis nondimensionalized by the boundary layer length scale.
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FIG. 8. Exponentially growing and propagating oscillations of the constant amplitude. POD (a) and SOD (b): spectra (left), mode shapes (middle), and amplitude coefficients
(right). DMD (c): spectra (left) and mode shapes (right). Synthetic data input mode shapes are shown with open circles and decomposition mode shapes are shown with
dashed lines. Mode shape are plotted against the y-axis nondimensionalized by the boundary layer length scale.

VI. CONCLUSION
Here, we have provided a common interpretation of four

powerful modal decomposition techniques, which helps unify our
understanding of POD, SOD, S-VD, and DMD. Each method
can be formulated (at least in part) as a constrained maximiza-
tion problem, which provides insight into the physical nature of
each decomposition. POD considers those modes which maximize
amplitude variance of projection, while keeping modes orthogo-
nal. SOD considers those modes which maximize amplitude vari-
ance projection, while at the same time keeping these projections
as smooth in time as possible. S-VD is a variant of SOD, which
allows for the identification of complex vibration modes. DMD also
shares this complex mode identification property by the decompo-
sition of the linear evolution operator and can be interpreted as
identifying modes that maximize their modal projection onto the

time-shifted data matrix while minimizing their projection onto the
covariance matrix of the data and time-shifted data for the case
of pure exponential growth. However, for the case of pure oscil-
lation, DMD can be interpreted as identifying modes that max-
imize their modal projection onto the time-shifted data matrix
while minimizing their projection onto the original data matrix.
The various properties of POD, SOD, and DMD are illustrated
by consideration of synthetic hypersonic boundary layer stability
data for purely oscillating, propagating, and exponentially growing
disturbances.
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