77 research outputs found

    In normal rat, intraventricularly administered insulin-like growth factor-1 is rapidly cleared from CSF with limited distribution into brain

    Get PDF
    BACKGROUND: Putatively active drugs are often intraventricularly administered to gain direct access to brain and circumvent the blood-brain barrier. A few studies on the normal central nervous system (CNS) have shown, however, that the distribution of materials after intraventricular injections is much more limited than presumed and their exit from cerebrospinal fluid (CSF) is more rapid than generally believed. In this study, we report the intracranial distribution and the clearance from CSF and adjacent CNS tissue of radiolabeled insulin-like growth factor-1 after injection into one lateral ventricle of the normal rat brain. METHODS: Under barbiturate anesthesia, (125)I-labeled insulin-like growth factor-1 (IGF-1) was injected into one lateral ventricle of normal Sprague-Dawley rats. The subsequent distribution of IGF-1 through the cerebrospinal fluid (CSF) system and into brain, cerebral blood vessels, and systemic blood was measured over time by gamma counting and quantitative autoradiography (QAR). RESULTS: Within 5 min of infusion, IGF-1 had spread from the infused lateral ventricle into and through the third and fourth ventricles. At this time, 25% of the infused IGF-1 had disappeared from the CSF-brain-meningeal system; the half time of this loss was 12 min. The plasma concentration of cleared IGF-1 was, however, very low from 2 to 9 min and only began to rise markedly after 20 min. This delay between loss and gain plus the lack of radiotracer in the cortical subarachnoid space suggested that much of the IGF-1 was cleared into blood via the cranial and/or spinal nerve roots and their associated lymphatic systems rather than periventricular tissue and arachnoid villi. Less than 10% of the injected radioactivity remained in the CSF-brain system after 180 min. The CSF and arteries and arterioles within the subarachnoid cisterns were labeled with IGF-1 within 10 min. Between 60 and 180 min, most of the radioactivity within the cranium was retained within and around these blood vessels and by periaqueductal gray matter. Tissue profiles at two sites next to ventricular CSF showed that IGF-1 penetrated less than 1.25 mm into brain tissue and appreciable (125)I-activity remained at the tissue-ventricular CSF interface after 180 min. CONCLUSION: Our findings suggest that entry of IGF-1 into normal brain parenchyma after lateral ventricle administration is limited by rapid clearance from CSF and brain and slow movement, apparently by diffusion, into the periventricular tissue. Various growth factors and other neuroactive agents have been reported to be neuroprotective within the injured brain after intraventricular administration. It is postulated that the delivery of such factors to neurons and glia in the injured brain may be facilitated by abnormal CSF flow. These several observations suggest that the flow of CSF and entrained solutes may differ considerably between normal and abnormal brain and even among various neuropathologies

    Transient and permanent resolution of ischemic lesions on diffusion-weighted imaging after brief periods of focal ischemia in rats : correlation with histopathology

    Get PDF
    BACKGROUND AND PURPOSE: The early ischemic lesions demonstrated by diffusion-weighted imaging (DWI) are potentially reversible. The purposes of this study were to determine whether resolution of initial DWI lesions is transient or permanent after different brief periods of focal brain ischemia and to evaluate histological outcomes. METHODS: Sixteen rats were subjected to 10 minutes (n=7) or 30 minutes (n=7) of temporary middle cerebral artery occlusion or sham operation (n=2). DWI, perfusion-weighted imaging (PWI), and T(2)-weighted imaging (T(2)WI) were performed during occlusion; immediately after reperfusion; and at 0.5, 1.0, 1.5, 12, 24, 48, and 72 hours after reperfusion. After the last MRI study, the brains were fixed, sectioned, stained with hematoxylin and eosin, and evaluated for neuronal necrosis. RESULTS: No MRI or histological abnormalities were observed in the sham-operated rats. In both the 10-minute and 30-minute groups, the perfusion deficits and DWI hyperintensities that occurred during occlusion disappeared shortly after reperfusion. The DWI, PWI, and T(2)WI results remained normal thereafter in the 10-minute group, whereas secondary DWI hyperintensity and T(2)WI abnormalities developed at the 12-hour observation point in the 30-minute group. Histological examinations demonstrated neuronal necrosis in both groups, but the number of necrotic neurons was significantly higher in the 30-minute group (95+/-4%) than in the 10-minute group (17+/-10%, P\u3c0.0001). CONCLUSIONS: Transient or permanent resolution of initial DWI lesions depends on the duration of ischemia. Transient resolution of DWI lesions is associated with widespread neuronal necrosis; moreover, permanent resolution of DWI lesions does not necessarily indicate complete salvage of brain tissue from ischemic injury

    Hidden in the Middle : Culture, Value and Reward in Bioinformatics

    Get PDF
    Bioinformatics - the so-called shotgun marriage between biology and computer science - is an interdiscipline. Despite interdisciplinarity being seen as a virtue, for having the capacity to solve complex problems and foster innovation, it has the potential to place projects and people in anomalous categories. For example, valorised 'outputs' in academia are often defined and rewarded by discipline. Bioinformatics, as an interdisciplinary bricolage, incorporates experts from various disciplinary cultures with their own distinct ways of working. Perceived problems of interdisciplinarity include difficulties of making explicit knowledge that is practical, theoretical, or cognitive. But successful interdisciplinary research also depends on an understanding of disciplinary cultures and value systems, often only tacitly understood by members of the communities in question. In bioinformatics, the 'parent' disciplines have different value systems; for example, what is considered worthwhile research by computer scientists can be thought of as trivial by biologists, and vice versa. This paper concentrates on the problems of reward and recognition described by scientists working in academic bioinformatics in the United Kingdom. We highlight problems that are a consequence of its cross-cultural make-up, recognising that the mismatches in knowledge in this borderland take place not just at the level of the practical, theoretical, or epistemological, but also at the cultural level too. The trend in big, interdisciplinary science is towards multiple authors on a single paper; in bioinformatics this has created hybrid or fractional scientists who find they are being positioned not just in-between established disciplines but also in-between as middle authors or, worse still, left off papers altogether

    Pattern formation outside of equilibrium

    Full text link

    The Author Replies

    No full text
    corecore