2,058 research outputs found
Measuring Transit Signal Recovery in the Kepler Pipeline II: Detection Efficiency as Calculated in One Year of Data
The Kepler planet sample can only be used to reconstruct the underlying
planet occurrence rate if the detection efficiency of the Kepler pipeline is
known, here we present the results of a second experiment aimed at
characterising this detection efficiency. We inject simulated transiting planet
signals into the pixel data of ~10,000 targets, spanning one year of
observations, and process the pixels as normal. We compare the set of
detections made by the pipeline with the expectation from the set of simulated
planets, and construct a sensitivity curve of signal recovery as a function of
the signal-to-noise of the simulated transit signal train. The sensitivity
curve does not meet the hypothetical maximum detection efficiency, however it
is not as pessimistic as some of the published estimates of the detection
efficiency. For the FGK stars in our sample, the sensitivity curve is well fit
by a gamma function with the coefficients a = 4.35 and b = 1.05. We also find
that the pipeline algorithms recover the depths and periods of the injected
signals with very high fidelity, especially for periods longer than 10 days. We
perform a simplified occurrence rate calculation using the measured detection
efficiency compared to previous assumptions of the detection efficiency found
in the literature to demonstrate the systematic error introduced into the
resulting occurrence rates. The discrepancies in the calculated occurrence
rates may go some way towards reconciling some of the inconsistencies found in
the literature.Comment: 13 pages, 7 figures, 1 electronic table, accepted by Ap
A Class of Eccentric Binaries with Dynamic Tidal Distortions Discovered with Kepler
We have discovered a class of eccentric binary systems within the Kepler data
archive that have dynamic tidal distortions and tidally-induced pulsations.
Each has a uniquely shaped light curve that is characterized by periodic
brightening or variability at time scales of 4-20 days, frequently accompanied
by shorter period oscillations. We can explain the dominant features of the
entire class with orbitally-varying tidal forces that occur in close, eccentric
binary systems. The large variety of light curve shapes arises from viewing
systems at different angles. This hypothesis is supported by spectroscopic
radial velocity measurements for five systems, each showing evidence of being
in an eccentric binary system. Prior to the discovery of these 17 new systems,
only four stars, where KOI-54 is the best example, were known to have evidence
of these dynamic tides and tidally-induced oscillations. We perform preliminary
fits to the light curves and radial velocity data, present the overall
properties of this class and discuss the work required to accurately model
these systems.Comment: 13 pages, submitted to Ap
Measuring Transit Signal Recovery in the Kepler Pipeline. III. Completeness of the Q1-Q17 DR24 Planet Candidate Catalogue, with Important Caveats for Occurrence Rate Calculations
With each new version of the Kepler pipeline and resulting planet candidate
catalogue, an updated measurement of the underlying planet population can only
be recovered with an corresponding measurement of the Kepler pipeline detection
efficiency. Here, we present measurements of the sensitivity of the pipeline
(version 9.2) used to generate the Q1-Q17 DR24 planet candidate catalog
(Coughlin et al. 2016). We measure this by injecting simulated transiting
planets into the pixel-level data of 159,013 targets across the entire Kepler
focal plane, and examining the recovery rate. Unlike previous versions of the
Kepler pipeline, we find a strong period dependence in the measured detection
efficiency, with longer (>40 day) periods having a significantly lower
detectability than shorter periods, introduced in part by an incorrectly
implemented veto. Consequently, the sensitivity of the 9.2 pipeline cannot be
cast as a simple one-dimensional function of the signal strength of the
candidate planet signal as was possible for previous versions of the pipeline.
We report on the implications for occurrence rate calculations based on the
Q1-Q17 DR24 planet candidate catalog and offer important caveats and
recommendations for performing such calculations. As before, we make available
the entire table of injected planet parameters and whether they were recovered
by the pipeline, enabling readers to derive the pipeline detection sensitivity
in the planet and/or stellar parameter space of their choice.Comment: 8 pages, 5 figures, full electronic version of Table 1 available at
the NASA Exoplanet Archive; accepted by ApJ May 2nd, 201
Emergent constraints for the climate system as effective parameters of bulk differential equations
Planning for the impacts of climate change requires accurate projections by Earth system models (ESMs). ESMs, as developed by many research centres, estimate changes to weather and climate as atmospheric greenhouse gases (GHGs) rise, and they inform the influential Intergovernmental Panel on Climate Change (IPCC) reports. ESMs are advancing the understanding of key climate system attributes. However, there remain substantial inter-ESM differences in their estimates of future meteorological change, even for a common GHG trajectory, and such differences make adaptation planning difficult. Until recently, the primary approach to reducing projection uncertainty has been to place an emphasis on simulations that best describe the contemporary climate. Yet a model that performs well for present-day atmospheric GHG levels may not necessarily be accurate for higher GHG levels and vice versa. A relatively new approach of emergent constraints (ECs) is gaining much attention as a technique to remove uncertainty between climate models. This method involves searching for an inter-ESM link between a quantity that we can also measure now and a second quantity of major importance for describing future climate. Combining the contemporary measurement with this relationship refines the future projection. Identified ECs exist for thermal, hydrological and geochemical cycles of the climate system. As ECs grow in influence on climate policy, the method is under intense scrutiny, creating a requirement to understand them better. We hypothesise that as many Earth system components vary in both space and time, their behaviours often satisfy large-scale differential equations (DEs). Such DEs are valid at coarser scales than the equations coded in ESMs which capture finer high-resolution grid-box-scale effects. We suggest that many ECs link to such effective hidden DEs implicit in ESMs and that aggregate small-scale features. An EC may exist because its two quantities depend similarly on an ESM-specific internal bulk parameter in such a DE, with measurements constraining and revealing its (implicit) value. Alternatively, well-established process understanding coded at the ESM grid box scale, when aggregated, may generate a bulk parameter with a common “emergent” value across all ESMs. This single emerging parameter may link uncertainties in a contemporary climate driver to those of a climate-related property of interest. In these circumstances, the EC combined with a measurement of the driver that is uncertain constrains the estimate of the climate-related quantity. We offer simple illustrative examples of these concepts with generic DEs but with their solutions placed in a conceptual EC framework.</p
Photometric Analysis in the Kepler Science Operations Center Pipeline
We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (~thirty minute) and 512 short cadence (~one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy
Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample
We measure planet occurrence rates using the planet candidates discovered by
the Q1-Q16 Kepler pipeline search. This study examines planet occurrence rates
for the Kepler GK dwarf target sample for planet radii, 0.75<Rp<2.5 Rearth, and
orbital periods, 50<Porb<300 days, with an emphasis on a thorough exploration
and identification of the most important sources of systematic uncertainties.
Integrating over this parameter space, we measure an occurrence rate of F=0.77
planets per star, with an allowed range of 0.3<F<1.9. The allowed range takes
into account both statistical and systematic uncertainties, and values of F
beyond the allowed range are significantly in disagreement with our analysis.
We generally find higher planet occurrence rates and a steeper increase in
planet occurrence rates towards small planets than previous studies of the
Kepler GK dwarf sample. Through extrapolation, we find that the one year
orbital period terrestrial planet occurrence rate, zeta_1=0.1, with an allowed
range of 0.01<zeta_1<2, where zeta_1 is defined as the number of planets per
star within 20% of the Rp and Porb of Earth. For G dwarf hosts, the zeta_1
parameter space is a subset of the larger eta_earth parameter space, thus
zeta_1 places a lower limit on eta_earth for G dwarf hosts. From our analysis,
we identify the leading sources of systematics impacting Kepler occurrence rate
determinations as: reliability of the planet candidate sample, planet radii,
pipeline completeness, and stellar parameters.Comment: 19 Pages, 17 Figures, Submitted ApJ. Python source to support Kepler
pipeline completeness estimates available at
http://github.com/christopherburke/KeplerPORTs
X-Ray and UV Orbital Phase Dependence in LMC X-3
The black-hole binary LMC X-3 is known to be variable on time scales of days
to years. We investigate X-ray and ultraviolet variability in the system as a
function of the 1.7 day binary phase using a 6.4 day observation with the Rossi
X-ray Timing Explorer (RXTE) from December 1998. An abrupt 14% flux decrease,
lasting nearly an entire orbit, is followed by a return to previous flux
levels. This behavior occurs twice, at nearly the same binary phase, but it is
not present in consecutive orbits. When the X-ray flux is at lower intensity, a
periodic amplitude modulation of 7% is evident in data folded modulo the
orbital period. The higher intensity data show weaker correlation with phase.
This is the first report of X-ray variability at the orbital period of LMC X-3.
Archival RXTE observations of LMC X--3 during a high flux state in December
1996 show similar phase dependence. An ultraviolet light curve obtained with
the High Speed Photometer aboard the Hubble Space Telescope shows orbital
modulation consistent with that in the optical, caused by the ellipsoidal
variation of the spatially deformed companion.
The X-ray spectrum of LMC X-3 can be acceptably represented by a
phenomenological disk-black-body plus a power law. Changes in the spectrum of
LMC X-3 during our observations are compatible with earlier observations during
which variations in the 2-10 keV flux are tracked closely by the disk geometry
spectral model parameter.Comment: 11 pages, 7 figures, ApJ in pres
Shallow stratigraphic control on pockmark distribution in north temperate estuaries
This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 329-331 (2012): 34-45, doi:10.1016/j.margeo.2012.09.006.Pockmark fields occur throughout northern North American temperate estuaries despite the absence of extensive thermogenic hydrocarbon deposits typically associated with pockmarks. In such settings, the origins of the gas and triggering mechanism(s) responsible for pockmark formation are not obvious. Nor is it known why pockmarks proliferate in this region but do not occur south of the glacial terminus in eastern North America. This paper tests two hypotheses addressing these knowledge gaps: 1) the region's unique sea-level history provided a terrestrial deposit that sourced the gas responsible for pockmark formation; and 2) the region's physiography controls pockmarks distribution. This study integrates over 2500 km of high-resolution swath bathymetry, Chirp seismic reflection profiles and vibracore data acquired in three estuarine pockmark fields in the Gulf of Maine and Bay of Fundy. Vibracores sampled a hydric paleosol lacking the organic-rich upper horizons, indicating that an organic-rich terrestrial deposit was eroded prior to pockmark formation. This observation suggests that the gas, which is presumably responsible for the formation of the pockmarks, originated in Holocene estuarine sediments (loss on ignition 3.5–10%), not terrestrial deposits that were subsequently drowned and buried by mud. The 7470 pockmarks identified in this study are non-randomly clustered. Pockmark size and distribution relate to Holocene sediment thickness (r2 = 0.60), basin morphology and glacial deposits. The irregular underlying topography that dictates Holocene sediment thickness may ultimately play a more important role in temperate estuarine pockmark distribution than drowned terrestrial deposits. These results give insight into the conditions necessary for pockmark formation in nearshore coastal environments.Graduate support for Brothers came from a Maine Economic Improvement
Fund Dissertation Fellowship
- …