2,058 research outputs found

    Measuring Transit Signal Recovery in the Kepler Pipeline II: Detection Efficiency as Calculated in One Year of Data

    Get PDF
    The Kepler planet sample can only be used to reconstruct the underlying planet occurrence rate if the detection efficiency of the Kepler pipeline is known, here we present the results of a second experiment aimed at characterising this detection efficiency. We inject simulated transiting planet signals into the pixel data of ~10,000 targets, spanning one year of observations, and process the pixels as normal. We compare the set of detections made by the pipeline with the expectation from the set of simulated planets, and construct a sensitivity curve of signal recovery as a function of the signal-to-noise of the simulated transit signal train. The sensitivity curve does not meet the hypothetical maximum detection efficiency, however it is not as pessimistic as some of the published estimates of the detection efficiency. For the FGK stars in our sample, the sensitivity curve is well fit by a gamma function with the coefficients a = 4.35 and b = 1.05. We also find that the pipeline algorithms recover the depths and periods of the injected signals with very high fidelity, especially for periods longer than 10 days. We perform a simplified occurrence rate calculation using the measured detection efficiency compared to previous assumptions of the detection efficiency found in the literature to demonstrate the systematic error introduced into the resulting occurrence rates. The discrepancies in the calculated occurrence rates may go some way towards reconciling some of the inconsistencies found in the literature.Comment: 13 pages, 7 figures, 1 electronic table, accepted by Ap

    A Class of Eccentric Binaries with Dynamic Tidal Distortions Discovered with Kepler

    Full text link
    We have discovered a class of eccentric binary systems within the Kepler data archive that have dynamic tidal distortions and tidally-induced pulsations. Each has a uniquely shaped light curve that is characterized by periodic brightening or variability at time scales of 4-20 days, frequently accompanied by shorter period oscillations. We can explain the dominant features of the entire class with orbitally-varying tidal forces that occur in close, eccentric binary systems. The large variety of light curve shapes arises from viewing systems at different angles. This hypothesis is supported by spectroscopic radial velocity measurements for five systems, each showing evidence of being in an eccentric binary system. Prior to the discovery of these 17 new systems, only four stars, where KOI-54 is the best example, were known to have evidence of these dynamic tides and tidally-induced oscillations. We perform preliminary fits to the light curves and radial velocity data, present the overall properties of this class and discuss the work required to accurately model these systems.Comment: 13 pages, submitted to Ap

    Measuring Transit Signal Recovery in the Kepler Pipeline. III. Completeness of the Q1-Q17 DR24 Planet Candidate Catalogue, with Important Caveats for Occurrence Rate Calculations

    Get PDF
    With each new version of the Kepler pipeline and resulting planet candidate catalogue, an updated measurement of the underlying planet population can only be recovered with an corresponding measurement of the Kepler pipeline detection efficiency. Here, we present measurements of the sensitivity of the pipeline (version 9.2) used to generate the Q1-Q17 DR24 planet candidate catalog (Coughlin et al. 2016). We measure this by injecting simulated transiting planets into the pixel-level data of 159,013 targets across the entire Kepler focal plane, and examining the recovery rate. Unlike previous versions of the Kepler pipeline, we find a strong period dependence in the measured detection efficiency, with longer (>40 day) periods having a significantly lower detectability than shorter periods, introduced in part by an incorrectly implemented veto. Consequently, the sensitivity of the 9.2 pipeline cannot be cast as a simple one-dimensional function of the signal strength of the candidate planet signal as was possible for previous versions of the pipeline. We report on the implications for occurrence rate calculations based on the Q1-Q17 DR24 planet candidate catalog and offer important caveats and recommendations for performing such calculations. As before, we make available the entire table of injected planet parameters and whether they were recovered by the pipeline, enabling readers to derive the pipeline detection sensitivity in the planet and/or stellar parameter space of their choice.Comment: 8 pages, 5 figures, full electronic version of Table 1 available at the NASA Exoplanet Archive; accepted by ApJ May 2nd, 201

    Emergent constraints for the climate system as effective parameters of bulk differential equations

    Get PDF
    Planning for the impacts of climate change requires accurate projections by Earth system models (ESMs). ESMs, as developed by many research centres, estimate changes to weather and climate as atmospheric greenhouse gases (GHGs) rise, and they inform the influential Intergovernmental Panel on Climate Change (IPCC) reports. ESMs are advancing the understanding of key climate system attributes. However, there remain substantial inter-ESM differences in their estimates of future meteorological change, even for a common GHG trajectory, and such differences make adaptation planning difficult. Until recently, the primary approach to reducing projection uncertainty has been to place an emphasis on simulations that best describe the contemporary climate. Yet a model that performs well for present-day atmospheric GHG levels may not necessarily be accurate for higher GHG levels and vice versa. A relatively new approach of emergent constraints (ECs) is gaining much attention as a technique to remove uncertainty between climate models. This method involves searching for an inter-ESM link between a quantity that we can also measure now and a second quantity of major importance for describing future climate. Combining the contemporary measurement with this relationship refines the future projection. Identified ECs exist for thermal, hydrological and geochemical cycles of the climate system. As ECs grow in influence on climate policy, the method is under intense scrutiny, creating a requirement to understand them better. We hypothesise that as many Earth system components vary in both space and time, their behaviours often satisfy large-scale differential equations (DEs). Such DEs are valid at coarser scales than the equations coded in ESMs which capture finer high-resolution grid-box-scale effects. We suggest that many ECs link to such effective hidden DEs implicit in ESMs and that aggregate small-scale features. An EC may exist because its two quantities depend similarly on an ESM-specific internal bulk parameter in such a DE, with measurements constraining and revealing its (implicit) value. Alternatively, well-established process understanding coded at the ESM grid box scale, when aggregated, may generate a bulk parameter with a common “emergent” value across all ESMs. This single emerging parameter may link uncertainties in a contemporary climate driver to those of a climate-related property of interest. In these circumstances, the EC combined with a measurement of the driver that is uncertain constrains the estimate of the climate-related quantity. We offer simple illustrative examples of these concepts with generic DEs but with their solutions placed in a conceptual EC framework.</p

    Photometric Analysis in the Kepler Science Operations Center Pipeline

    Get PDF
    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (~thirty minute) and 512 short cadence (~one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy

    Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample

    Get PDF
    We measure planet occurrence rates using the planet candidates discovered by the Q1-Q16 Kepler pipeline search. This study examines planet occurrence rates for the Kepler GK dwarf target sample for planet radii, 0.75<Rp<2.5 Rearth, and orbital periods, 50<Porb<300 days, with an emphasis on a thorough exploration and identification of the most important sources of systematic uncertainties. Integrating over this parameter space, we measure an occurrence rate of F=0.77 planets per star, with an allowed range of 0.3<F<1.9. The allowed range takes into account both statistical and systematic uncertainties, and values of F beyond the allowed range are significantly in disagreement with our analysis. We generally find higher planet occurrence rates and a steeper increase in planet occurrence rates towards small planets than previous studies of the Kepler GK dwarf sample. Through extrapolation, we find that the one year orbital period terrestrial planet occurrence rate, zeta_1=0.1, with an allowed range of 0.01<zeta_1<2, where zeta_1 is defined as the number of planets per star within 20% of the Rp and Porb of Earth. For G dwarf hosts, the zeta_1 parameter space is a subset of the larger eta_earth parameter space, thus zeta_1 places a lower limit on eta_earth for G dwarf hosts. From our analysis, we identify the leading sources of systematics impacting Kepler occurrence rate determinations as: reliability of the planet candidate sample, planet radii, pipeline completeness, and stellar parameters.Comment: 19 Pages, 17 Figures, Submitted ApJ. Python source to support Kepler pipeline completeness estimates available at http://github.com/christopherburke/KeplerPORTs

    X-Ray and UV Orbital Phase Dependence in LMC X-3

    Get PDF
    The black-hole binary LMC X-3 is known to be variable on time scales of days to years. We investigate X-ray and ultraviolet variability in the system as a function of the 1.7 day binary phase using a 6.4 day observation with the Rossi X-ray Timing Explorer (RXTE) from December 1998. An abrupt 14% flux decrease, lasting nearly an entire orbit, is followed by a return to previous flux levels. This behavior occurs twice, at nearly the same binary phase, but it is not present in consecutive orbits. When the X-ray flux is at lower intensity, a periodic amplitude modulation of 7% is evident in data folded modulo the orbital period. The higher intensity data show weaker correlation with phase. This is the first report of X-ray variability at the orbital period of LMC X-3. Archival RXTE observations of LMC X--3 during a high flux state in December 1996 show similar phase dependence. An ultraviolet light curve obtained with the High Speed Photometer aboard the Hubble Space Telescope shows orbital modulation consistent with that in the optical, caused by the ellipsoidal variation of the spatially deformed companion. The X-ray spectrum of LMC X-3 can be acceptably represented by a phenomenological disk-black-body plus a power law. Changes in the spectrum of LMC X-3 during our observations are compatible with earlier observations during which variations in the 2-10 keV flux are tracked closely by the disk geometry spectral model parameter.Comment: 11 pages, 7 figures, ApJ in pres

    Shallow stratigraphic control on pockmark distribution in north temperate estuaries

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 329-331 (2012): 34-45, doi:10.1016/j.margeo.2012.09.006.Pockmark fields occur throughout northern North American temperate estuaries despite the absence of extensive thermogenic hydrocarbon deposits typically associated with pockmarks. In such settings, the origins of the gas and triggering mechanism(s) responsible for pockmark formation are not obvious. Nor is it known why pockmarks proliferate in this region but do not occur south of the glacial terminus in eastern North America. This paper tests two hypotheses addressing these knowledge gaps: 1) the region's unique sea-level history provided a terrestrial deposit that sourced the gas responsible for pockmark formation; and 2) the region's physiography controls pockmarks distribution. This study integrates over 2500 km of high-resolution swath bathymetry, Chirp seismic reflection profiles and vibracore data acquired in three estuarine pockmark fields in the Gulf of Maine and Bay of Fundy. Vibracores sampled a hydric paleosol lacking the organic-rich upper horizons, indicating that an organic-rich terrestrial deposit was eroded prior to pockmark formation. This observation suggests that the gas, which is presumably responsible for the formation of the pockmarks, originated in Holocene estuarine sediments (loss on ignition 3.5–10%), not terrestrial deposits that were subsequently drowned and buried by mud. The 7470 pockmarks identified in this study are non-randomly clustered. Pockmark size and distribution relate to Holocene sediment thickness (r2 = 0.60), basin morphology and glacial deposits. The irregular underlying topography that dictates Holocene sediment thickness may ultimately play a more important role in temperate estuarine pockmark distribution than drowned terrestrial deposits. These results give insight into the conditions necessary for pockmark formation in nearshore coastal environments.Graduate support for Brothers came from a Maine Economic Improvement Fund Dissertation Fellowship
    • …
    corecore