64 research outputs found
Mathematical Modeling of Biological Systems for Oncology Applications: From Basic Science to Clinically Translatable Methods
April 13, 2023
Joseph D. Butner, PhDFaculty FellowMathematics in Medicine Program, Research Institute, Houston Methodisthttps://openworks.mdanderson.org/igct_seminars/1011/thumbnail.jp
Protocol for Mathematical Prediction of Patient Response and Survival to Immune Checkpoint Inhibitor Immunotherapy
This protocol describes the application of a mechanistic mathematical model of immune checkpoint inhibitor (ICI) immunotherapy to patient tumor imaging data for predicting solid tumor response and patient survival under ICI intervention. We describe steps for data collection and processing, data pipelines, and approaches to increase precision. The protocol is highly predictive as early as the first restaging after treatment start and can be used with standard-of-care imaging measures. For complete details on the use and execution of this protocol, please refer to Butner et al. (2020
Immune-Checkpoint Inhibitor Therapy Response Evaluation Using Oncophysics-Based Mathematical Models
The field of oncology has transformed with the advent of immunotherapies. The standard of care for multiple cancers now includes novel drugs that target key checkpoints that function to modulate immune responses, enabling the patient\u27s immune system to elicit an effective anti-tumor response. While these immune-based approaches can have dramatic effects in terms of significantly reducing tumor burden and prolonging survival for patients, the therapeutic approach remains active only in a minority of patients and is often not durable. Multiple biological investigations have identified key markers that predict response to the most common form of immunotherapy-immune checkpoint inhibitors (ICI). These biomarkers help enrich patients for ICI but are not 100% predictive. Understanding the complex interactions of these biomarkers with other pathways and factors that lead to ICI resistance remains a major goal. Principles of oncophysics-the idea that cancer can be described as a multiscale physical aberration-have shown promise in recent years in terms of capturing the essence of the complexities of ICI interactions. Here, we review the biological knowledge of mechanisms of ICI action and how these are incorporated into modern oncophysics-based mathematical models. Building on the success of oncophysics-based mathematical models may help to discover new, rational methods to engineer immunotherapy for patients in the future. This article is categorized under: Therapeutic Approaches and Drug Discovery \u3e Nanomedicine for Oncologic Disease
Mathematical Modeling of Cancer Immunotherapy for Personalized Clinical Translation
Encouraging advances are being made in cancer immunotherapy modeling, especially in the key areas of developing personalized treatment strategies based on individual patient parameters, predicting treatment outcomes and optimizing immunotherapy synergy when used in combination with other treatment approaches. Here we present a focused review of the most recent mathematical modeling work on cancer immunotherapy with a focus on clinical translatability. It can be seen that this field is transitioning from pure basic science to applications that can make impactful differences in patients\u27 lives. We discuss how researchers are integrating experimental and clinical data to fully inform models so that they can be applied for clinical predictions, and present the challenges that remain to be overcome if widespread clinical adaptation is to be realized. Lastly, we discuss the most promising future applications and areas that are expected to be the focus of extensive upcoming modeling studies
Hybridizing Mechanistic Modeling and Deep Learning for Personalized Survival Prediction After Immune Checkpoint Inhibitor Immunotherapy
We present a study where predictive mechanistic modeling is combined with deep learning methods to predict individual patient survival probabilities under immune checkpoint inhibitor (ICI) immunotherapy. This hybrid approach enables prediction based on both measures that are calculable from mechanistic models of key mechanisms underlying ICI therapy that may not be directly measurable in the clinic and easily measurable quantities or patient characteristics that are not always readily incorporated into predictive mechanistic models. A deep learning time-to-event predictive model trained on a hybrid mechanistic + clinical data set from 93 patients achieved higher per-patient predictive accuracy based on event-time concordance, Brier score, and negative binomial log-likelihood-based criteria than when trained on only mechanistic model-derived values or only clinical data. Feature importance analysis revealed that both clinical and model-derived parameters play prominent roles in increasing prediction accuracy, further supporting the advantage of our hybrid approach
Translational Modeling-Based Evidence for Enhanced Efficacy of Standard-of-Care Drugs in Combination With Anti-microRNA-155 in Non-Small-Cell Lung Cancer
BACKGROUND: Elevated microRNA-155 (miR-155) expression in non-small-cell lung cancer (NSCLC) promotes cisplatin resistance and negatively impacts treatment outcomes. However, miR-155 can also boost anti-tumor immunity by suppressing PD-L1 expression. Therapeutic targeting of miR-155 through its antagonist, anti-miR-155, has proven challenging due to its dual molecular effects.
METHODS: We developed a multiscale mechanistic model, calibrated with in vivo data and then extrapolated to humans, to investigate the therapeutic effects of nanoparticle-delivered anti-miR-155 in NSCLC, alone or in combination with standard-of-care drugs.
RESULTS: Model simulations and analyses of the clinical scenario revealed that monotherapy with anti-miR-155 at a dose of 2.5 mg/kg administered once every three weeks has substantial anti-cancer activity. It led to a median progression-free survival (PFS) of 6.7 months, which compared favorably to cisplatin and immune checkpoint inhibitors. Further, we explored the combinations of anti-miR-155 with standard-of-care drugs, and found strongly synergistic two- and three-drug combinations. A three-drug combination of anti-miR-155, cisplatin, and pembrolizumab resulted in a median PFS of 13.1 months, while a two-drug combination of anti-miR-155 and cisplatin resulted in a median PFS of 11.3 months, which emerged as a more practical option due to its simple design and cost-effectiveness. Our analyses also provided valuable insights into unfavorable dose ratios for drug combinations, highlighting the need for optimizing dose regimens to prevent antagonistic effects.
CONCLUSIONS: This work bridges the gap between preclinical development and clinical translation of anti-miR-155 and unravels the potential of anti-miR-155 combination therapies in NSCLC
Dedifferentiation-Mediated Stem Cell Niche Maintenance in Early-Stage Ductal Carcinoma In Situ Progression: Insights From a Multiscale Modeling Study
We present a multiscale agent-based model of ductal carcinoma in situ (DCIS) to study how key phenotypic and signaling pathways are involved in the early stages of disease progression. The model includes a phenotypic hierarchy, and key endocrine and paracrine signaling pathways, and simulates cancer ductal growth in a 3D lattice-free domain. In particular, by considering stochastic cell dedifferentiation plasticity, the model allows for study of how dedifferentiation to a more stem-like phenotype plays key roles in the maintenance of cancer stem cell populations and disease progression. Through extensive parameter perturbation studies, we have quantified and ranked how DCIS is sensitive to perturbations in several key mechanisms that are instrumental to early disease development. Our studies reveal that long-term maintenance of multipotent stem-like cell niches within the tumor are dependent on cell dedifferentiation plasticity, and that disease progression will become arrested due to dilution of the multipotent stem-like population in the absence of dedifferentiation. We have identified dedifferentiation rates necessary to maintain biologically relevant multipotent cell populations, and also explored quantitative relationships between dedifferentiation rates and disease progression rates, which may potentially help to optimize the efficacy of emerging anti-cancer stem cell therapeutics
Mass Transport Model of Radiation Response: Calibration and Application to Chemoradiation for Pancreatic Cancer
PURPOSE: The benefit of radiation therapy for pancreatic ductal adenocarcinoma (PDAC) remains unclear. We hypothesized that a new mechanistic mathematical model of chemotherapy and radiation response could predict clinical outcomes a priori, using a previously described baseline measurement of perfusion from computed tomography scans, normalized area under the enhancement curve (nAUC).
METHODS AND MATERIALS: We simplified an existing mass transport model that predicted cancer cell death by replacing previously unknown variables with averaged direct measurements from randomly selected pathologic sections of untreated PDAC. This allowed using nAUC as the sole model input to approximate tumor perfusion. We then compared the predicted cancer cell death to the actual cell death measured from corresponding resected tumors treated with neoadjuvant chemoradiation in a calibration cohort (n = 80) and prospective cohort (n = 25). After calibration, we applied the model to 2 separate cohorts for pathologic and clinical associations: targeted therapy cohort (n = 101), cetuximab/bevacizumab + radiosensitizing chemotherapy, and standard chemoradiation cohort (n = 81), radiosensitizing chemotherapy to 50.4 Gy in 28 fractions.
RESULTS: We established the relationship between pretreatment computed v nAUC to pathologically verified blood volume fraction of the tumor (r = 0.65; P = .009) and fractional tumor cell death (r = 0.97-0.99; P \u3c .0001) in the calibration and prospective cohorts. On multivariate analyses, accounting for traditional covariates, nAUC independently associated with overall survival in all cohorts (mean hazard ratios, 0.14-0.31). Receiver operator characteristic analyses revealed discrimination of good and bad prognostic groups in the cohorts with area under the curve values of 0.64 to 0.71.
CONCLUSIONS: This work presents a new mathematical modeling approach to predict clinical response from chemotherapy and radiation for PDAC. Our findings indicate that oxygen/drug diffusion strongly influences clinical responses and that nAUC is a potential tool to select patients with PDAC for radiation therapy
Early prediction of clinical response to checkpoint inhibitor therapy in human solid tumors through mathematical modeling
Background:: Checkpoint inhibitor therapy of cancer has led to markedly improved survival of a subset of patients in multiple solid malignant tumor types, yet the factors driving these clinical responses or lack thereof are not known. We have developed a mechanistic mathematical model for better understanding these factors and their relations in order to predict treatment outcome and optimize personal treatment strategies. Methods:: Here, we present a translational mathematical model dependent on three key parameters for describing efficacy of checkpoint inhibitors in human cancer: tumor growth rate (α), tumor-immune infiltration (Λ), and immunotherapy-mediated amplification of anti-tumor response (µ). The model was calibrated by fitting it to a compiled clinical tumor response dataset (n = 189 patients) obtained from published anti-PD-1 and anti-PD-L1 clinical trials, and then validated on an additional validation cohort (n = 64 patients) obtained from our in-house clinical trials. Results:: The derived parameters Λ and µ were both significantly different between responding versus nonresponding patients. Of note, our model appropriately classified response in 81.4% of patients by using only tumor volume measurements and within 2 months of treatment initiation in a retrospective analysis. The model reliably predicted clinical response to the PD-1/PD-L1 class of checkpoint inhibitors across multiple solid malignant tumor types. Comparison of model parameters to immunohistochemical measurement of PD-L1 and CD8+ T cells confirmed robust relationships between model parameters and their underlying biology. Conclusions:: These results have demonstrated reliable methods to inform model parameters directly from biopsy samples, which are conveniently obtainable as early as the start of treatment. Together, these suggest that the model parameters may serve as early and robust biomarkers of the efficacy of checkpoint inhibitor therapy on an individualized per-patient basis. Funding:: We gratefully acknowledge support from the Andrew Sabin Family Fellowship, Center for Radiation Oncology Research, Sheikh Ahmed Center for Pancreatic Cancer Research, GE Healthcare, Philips Healthcare, and institutional funds from the University of Texas M.D. Anderson Cancer Center. We have also received Cancer Center Support Grants from the National Cancer Institute (P30CA016672 to the University of Texas M.D. Anderson Cancer Center and P30CA072720 the Rutgers Cancer Institute of New Jersey). This research has also been supported in part by grants from the National Science Foundation Grant DMS-1930583 (ZW, VC), the National Institutes of Health (NIH) 1R01CA253865 (ZW, VC), 1U01CA196403 (ZW, VC), 1U01CA213759 (ZW, VC), 1R01CA226537 (ZW, RP, WA, VC), 1R01CA222007 (ZW, VC), U54CA210181 (ZW, VC), and the University of Texas System STARS Award (VC). BC acknowledges support through the SER Cymru II Programme, funded by the European Commission through the Horizon 2020 Marie Skłodowska-Curie Actions (MSCA) COFUND scheme and the Welsh European Funding Office (WEFO) under the European Regional Development Fund (ERDF). EK has also received support from the Project Purple, NIH (U54CA210181, U01CA200468, and U01CA196403), and the Pancreatic Cancer Action Network (16-65-SING). MF was supported through NIH/NCI center grant U54CA210181, R01CA222959, DoD Breast Cancer Research Breakthrough Level IV Award W81XWH-17-1-0389, and the Ernest Cockrell Jr. Presidential Distinguished Chair at Houston Methodist Research Institute. RP and WA received serial research awards from AngelWorks, the Gillson-Longenbaugh Foundation, and the Marcus Foundation. This work was also supported in part by grants from the National Cancer Institute to SHC (R01CA109322, R01CA127483, R01CA208703, and U54CA210181 CITO pilot grant) and to PYP (R01CA140243, R01CA188610, and U54CA210181 CITO pilot grant). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
World Addiction Medicine Reports : formation of the International Society of Addiction Medicine (ISAM) Global Expert Network (ISAM-GEN) and Its global surveys
Funding: All the infrastructure funding of this initiative is supported by the International Society of Addiction Medicine (ISAM). We will be open to fundraising for specific projects within the platform and future collaboration with external partners.Addiction medicine is a dynamic field that encompasses clinical practice and research in the context of societal, economic, and cultural factors at the local, national, regional, and global levels. This field has evolved profoundly during the past decades in terms of scopes and activities with the contribution of addiction medicine scientists and professionals globally. The dynamic nature of drug addiction at the global level has resulted in a crucial need for developing an international collaborative network of addiction societies, treatment programs and experts to monitor emerging national, regional, and global concerns. This protocol paper presents methodological details of running longitudinal surveys at national, regional, and global levels through the Global Expert Network of the International Society of Addiction Medicine (ISAM-GEN). The initial formation of the network with a recruitment phase and a round of snowball sampling provided 354 experts from 78 countries across the globe. In addition, 43 national/regional addiction societies/associations are also included in the database. The surveys will be developed by global experts in addiction medicine on treatment services, service coverage, co-occurring disorders, treatment standards and barriers, emerging addictions and/or dynamic changes in treatment needs worldwide. Survey participants in categories of (1) addiction societies/associations, (2) addiction treatment programs, (3) addiction experts/clinicians and (4) related stakeholders will respond to these global longitudinal surveys. The results will be analyzed and cross-examined with available data and peer-reviewed for publication.Peer reviewe
- …
