104 research outputs found

    Preconditioning and Postconditioning

    Get PDF

    A Cross-Cultural Evaluation of Liking and Perception of Salted Butter Produced from Different Feed Systems

    Get PDF
    peer-reviewedPerception and liking among Irish, German and USA consumers of salted butter produced from different feed systems—outdoor grass (FS-GRSS), grass/clover (FS-CLVR), and indoor concentrate (FS-TMR)—was investigated. A consumer study was conducted in all three countries. Irish and German assessors participated in ranking descriptive analysis (RDA), whereas descriptive analysis (DA) was carried out by a trained panel in the USA. Volatile analysis was conducted to identify differences in aroma compounds related to cow diet. Overall, there was no significant difference in overall liking of the butters, among USA, German and Irish consumers, although cross-cultural preferences were evident. Sensory attribute differences based on cow diet were evident across the three countries, as identified by German and Irish assessors and trained USA panelists, which are likely influenced by familiarity. The abundance of specific volatile aromatic compounds, especially some aldehydes and ketones, were significantly impacted by the feed system and may also contribute to some of the perceived sensory attribute differences in these butters

    Elliptical Galaxies and Bulges of Disk Galaxies: Summary of Progress and Outstanding Issues

    Full text link
    This is the summary chapter of a review book on galaxy bulges. Bulge properties and formation histories are more varied than those of ellipticals. I emphasize two advances: 1 - "Classical bulges" are observationally indistinguishable from ellipticals, and like them, are thought to form by major galaxy mergers. "Disky pseudobulges" are diskier and more actively star-forming (except in S0s) than are ellipticals. Theys are products of the slow ("secular") evolution of galaxy disks: bars and other nonaxisymmetries move disk gas toward the center, where it starbursts and builds relatively flat, rapidly rotating components. This secular evolution is a new area of galaxy evolution work that complements hierarchical clustering. 2 - Disks of high-redshift galaxies are unstable to the formation of mass clumps that sink to the center and merge - an alternative channel for the formation of classical bulges. I review successes and unsolved problems in the formation of bulges+ellipticals and their coevolution (or not) with supermassive black holes. I present an observer's perspective on simulations of dark matter galaxy formation including baryons. I review how our picture of the quenching of star formation is becoming general and secure at redshifts z < 1. The biggest challenge is to produce realistic bulges+ellipticals and disks that overlap over a factor of 10**3 in mass but that differ from each other as observed over that whole range. Second, how does hierarchical clustering make so many giant, bulgeless galaxies in field but not cluster environments? I argue that we rely too much on AGN and star-formation feedback to solve these challenges.Comment: 46 pages, 10 postscript figures, accepted for publication in Galactic Bulges, ed. E. Laurikainen, R. F. Peletier, & D. A. Gadotti (New York: Springer), in press (2015

    Indian Hedgehog release from TNF activated renal epithelia drives local and remote organ fibrosis

    Get PDF
    Progressive fibrosis is a feature of aging and chronic tissue injury in multiple organs, including the kidney and heart. Glioma-associated oncogene 1 expressing (Gli1+) cells are a major source of activated fibroblasts in multiple organs, but the links between injury, inflammation, and Gli1+ cell expansion and tissue fibrosis remain incompletely understood. We demonstrated that leukocyte-derived tumor necrosis factor (TNF) promoted Gli1+ cell proliferation and cardiorenal fibrosis through induction and release of Indian Hedgehog (IHH) from renal epithelial cells. Using single-cell–resolution transcriptomic analysis, we identified an “inflammatory” proximal tubular epithelial (iPT) population contributing to TNF- and nuclear factor κB (NF-κB)–induced IHH production in vivo. TNF-induced Ubiquitin D (Ubd) expression was observed in human proximal tubular cells in vitro and during murine and human renal disease and aging. Studies using pharmacological and conditional genetic ablation of TNF-induced IHH signaling revealed that IHH activated canonical Hedgehog signaling in Gli1+ cells, which led to their activation, proliferation, and fibrosis within the injured and aging kidney and heart. These changes were inhibited in mice by Ihh deletion in Pax8-expressing cells or by pharmacological blockade of TNF, NF-κB, or Gli1 signaling. Increased amounts of circulating IHH were associated with loss of renal function and higher rates of cardiovascular disease in patients with chronic kidney disease. Thus, IHH connects leukocyte activation to Gli1+ cell expansion and represents a potential target for therapies to inhibit inflammation-induced fibrosis

    The pathophysiology of restricted repetitive behavior

    Get PDF
    Restricted, repetitive behaviors (RRBs) are heterogeneous ranging from stereotypic body movements to rituals to restricted interests. RRBs are most strongly associated with autism but occur in a number of other clinical disorders as well as in typical development. There does not seem to be a category of RRB that is unique or specific to autism and RRB does not seem to be robustly correlated with specific cognitive, sensory or motor abnormalities in autism. Despite its clinical significance, little is known about the pathophysiology of RRB. Both clinical and animal models studies link repetitive behaviors to genetic mutations and a number of specific genetic syndromes have RRBs as part of the clinical phenotype. Genetic risk factors may interact with experiential factors resulting in the extremes in repetitive behavior phenotypic expression that characterize autism. Few studies of individuals with autism have correlated MRI findings and RRBs and no attempt has been made to associate RRB and post-mortem tissue findings. Available clinical and animal models data indicate functional and structural alterations in cortical-basal ganglia circuitry in the expression of RRB, however. Our own studies point to reduced activity of the indirect basal ganglia pathway being associated with high levels of repetitive behavior in an animal model. These findings, if generalizable, suggest specific therapeutic targets. These, and perhaps other, perturbations to cortical basal ganglia circuitry are mediated by specific molecular mechanisms (e.g., altered gene expression) that result in long-term, experience-dependent neuroadaptations that initiate and maintain repetitive behavior. A great deal more research is needed to uncover such mechanisms. Work in areas such as substance abuse, OCD, Tourette syndrome, Parkinson’s disease, and dementias promise to provide findings critical for identifying neurobiological mechanisms relevant to RRB in autism. Moreover, basic research in areas such as birdsong, habit formation, and procedural learning may provide additional, much needed clues. Understanding the pathophysioloy of repetitive behavior will be critical to identifying novel therapeutic targets and strategies for individuals with autism

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
    corecore