29 research outputs found

    Asymmetric microbial conversion of (E)-2-benzylideneindan-1-one by the filamentous fungi Botrytis cinerea, Trichoderma viride, and Eutypa lata

    Get PDF
    The transformation of (E)-2-benzylideneindan-1-one 1 by the filamentous fungi Botrytis cinerea, Trichoderma viride, and Eutypa lata as biocatalysts was studied. The results showed the catalytic potential of these fungi in affording several hydroxylation and reduction products, three of them reported here for the first time. The absolute configuration of enantiomerically pure 2-benzylindane derivatives was determined

    Pollutants Biodegradation by Fungi

    Get PDF
    Revisión sobre los mecanismos de detoxificación de contaminantes por hongosOne of the major problems facing the industrialized world today is the contamination of soils, ground water, sediments, surfacewater and air with hazardous and toxic chemicals. The application of microorganisms which degrade or transform hazardous organic contaminants to less toxic compounds has become increasingly popular in recent years. This review, with approximately 300 references covering the period 2005-2008, describes the use of fungi as a method of bioremediation to clean up environmental pollutants

    Editorial: Biotransformations by marine microorganisms and their enzymes

    Get PDF
    these contributions provide the reader with relevant up-to-date insights on the use of enzymes and whole cells from marine ecosystems as biocatalyst

    Asymmetric microbial reduction of ketones: absolute configuration of trans-4-ethyl-1-(1S-hydroxyethyl)cyclohexanol

    Get PDF
    A set of five fungal species, Botrytis cinerea, Trichoderma viride and Eutypa lata, and the endophytic fungi Colletotrichum crassipes and Xylaria sp., was used in screening for microbial biocatalysts to detect monooxygenase and alcohol dehydrogenase activities (for the stereoselective reduction of carbonyl compounds). 4-Ethylcyclohexanone and acetophenone were biotransformed by the fungal set. The main reaction pathways involved reduction and hydroxylations at several positions including tertiary carbons. B. cinerea was very effective in the bioreduction of both substrates leading to the chiral alcohol (S)-1- phenylethanol in up to 90% enantiomeric excess, and the cis–trans ratio for 4-ethylcyclohexanol was 0:100. trans-4-Ethyl-1-(1S-hydroxyethyl)cyclohexanol, obtained from biotransformation by means of an acyloin-type reaction, is reported here for the first time. The absolute configurations of the compounds trans-4-ethyl-1-(1S-hydroxyethyl)cyclohexanol and 4-(1S- and 4-(1R-hydroxyethyl)cyclohexanone were determined by NMR analysis of the corresponding Mosher’s esters

    Asymmetric preparation of antifungal 1-(4 -chlorophenyl)-1-cyclopropyl methanol and 1-(4 -chlorophenyl)-2-phenylethanol. Study of the detoxification mechanism by Botrytis cinerea

    Get PDF
    Chiral alcohols are important as bioactive compounds or as precursors to such molecules. On the basis of the different antifungal properties of the enantiopure alcohol derivatives of 4-chlorophenyl cyclopropyl ketone and benzyl 4-chlorophenyl ketone, their enantioselective synthesis by chemical and biocatalytic methods was studied. The detoxification pathways by the phytopathogen fungus Botrytis cinerea are reported

    Biocatalytic preparation and absolute configuration of enantiomerically pure fungistatic anti-2-benzylindane derivatives. Study of the detoxification mechanism by Botrytis cinerea

    Get PDF
    Enantiomerically pure 2-benzylindane derivatives were prepared using biocatalytic methods and their absolute configuration determined. (1R,2S)-2-Benzylindan-1-ol ((1R,2S)-2) and (S)-2-benzylindan-1-one ((S)-3) were produced by fermenting baker’s yeast. Lipase-mediated esterifications and hydrolysis of the corresponding racemic substrates gave rise to the enantiopure compounds (1S,2R)-2-benzylindan-1-ol ((1S,2R)-2) and (1R,2S)-2-benzylindan-1-ol ((1R,2S)-2), respectively. The antifungal activity of these products against two strains of the plant pathogen Botrytis cinerea was tested. The metabolism of anti-(±)-2-benzylindan-1-ol (anti-(±)-2) by B. cinerea as part of the fungal detoxification mechanism is also described and revealed interesting differences in the genome of both strains

    Comparative genome analysis of Bacillus spp. and its relationship with bioactive nonribosomal peptide production

    Get PDF
    Bacillus genus comprises an important number of species which produce a wide range of secondary metabolites displaying a broad spectrum of activity and great structural diversity. The genome sequences of an important number of species have been published and a large number of orphan genes reported. This review, covering all the literature in this field up to end of 2011, summarizes and compares the genetic potential of these organisms from the point of view of bioactive nonribosomal peptide production and their application as antibiotics, plant pathogen biocontrol, promotion of plant growth, etc. The biological and structural studies of the peptides isolated from Bacillus species are revised and some aspects of the biosynthesis of these metabolites and related compounds are discussed

    Non-terpenoid biotransformations by Mucor species

    Get PDF
    Biotransformation is an important tool for the structural modification of organic compounds, especially natural products with complex structures, which are difficult to achieve using ordinary methods. It is also useful as a model for mammalian metabolism due to similarities between mammalian and microbial enzyme systems. The development of novel biocatalytic methods is a continuously growing area of chemistry, microbiology, and genetic engineering, and novel microorganisms and/or their enzymes are being screened intensively. This review covers the transformation of non-terpenoid compounds such as steroids, coumarins, flavonoids, drugs, pesticides and others by Mucor spp. up to the end of 2012

    Marine-derived fungi as biocatalysts

    Get PDF
    Marine microorganisms account for over 90% of ocean biomass and their diversity is believed to be the result of their ability to adapt to extreme conditions of the marine environment. Biotransformations are used to produce a wide range of high-added value materials, and marine-derived fungi have proven to be a source of new enzymes, even for activities not previously discovered. This review focuses on biotransformations by fungi from marine environments, including bioremediation, from the standpoint of the chemical structure of the substrate, and covers up to September 202

    Biocatalytic Preparation of Chloroindanol Derivatives. Antifungal Activity and Detoxification by the Phytopathogenic Fungus Botrytis cinerea

    Get PDF
    Indanols are a family of chemical compounds that have been widely studied due to their broad range of biological activity. They are also important intermediates used as synthetic precursors to other products with important applications in pharmacology. Enantiomerically pure chloroindanol derivatives exhibiting antifungal activity against the phytopathogenic fungus Botrytis cinerea were prepared using biocatalytic methods. As a result of the biotransformation of racemic 6-chloroindanol (1) and 5-chloroindanol (2) by the fungus B. cinerea, the compounds anti-(+)-6-chloroindan-1,2-diol (anti-(+)-7), anti-(+)-5-chloroindan-1,3-diol (anti-(+)-8), syn-(+)-5-chloroindan-1,3-diol (syn-(+)-8), syn-(-)-5-chloroindan-1,3-diol (syn-(-)-8), and anti-(+)-5-chloroindan-1,2-diol (anti-(+)-9) were isolated for the first time. These products were characterized by spectroscopic techniques and their enantiomeric excesses studied by chromatographic techniques. The results obtained in the biotransformation seem to suggest that the fungus B. cinerea uses oxidation reactions as a detoxification mechanism
    corecore