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Abstract: One of the major problems facing the industrialized world today is the contamination of soils, ground water, 

sediments, surfacewater and air with hazardous and toxic chemicals. The application of microorganisms which degrade or 

transform hazardous organic contaminants to less toxic compounds has become increasingly popular in recent years. This 

review, with approximately 300 references covering the period 2005-2008, describes the use of fungi as a method of 

bioremediation to clean up environmental pollutants. 

1. INTRODUCTION 

Pollution of the environment has been one of the largest 
concerns to science and the general public in the last years. 
Nowadays, the industrialized world is confronted with the 
contamination of soils, water sources and air with hazardous 
and toxic xenobiotics. While regulatory steps have been im-
plemented to reduce or eliminate the production and release 
to the environment of these chemicals, significant environ-
mental contamination has occurred in the past and will 
probably continue to occur in the future. The industrializa-
tion of agriculture, rapid growth in the chemical industry and 
the need to generate cheap forms of energy have all caused 
the continuous release of very organic chemicals into the 
biosphere. For example, in the United States alone an enor-
mous amount waste is produced annually. In fact, approxi-
mately 300 million metric tons of hazardous wastes are pro-

duced each year.  

Bioremediation is a process by which living organisms 
degrade or transform hazardous organic contaminants to less 
toxic compounds [1]. Microorganisms in the indigenous en-
vironment have been known to play key roles in the biodeg-
radation of organic compounds. Unlike prokaryotes, eukary-
otic fungi have shown diverse metabolic potential resulting 
in metabolites similar to those produced from mammalian 
metabolism. These metabolic properties may help us to di-
rectly elucidate the metabolic fates of organic compounds 
occurring in mammalian liver cells instead of using mam-
malian microsomal fractions or live organisms. Fungal me-
tabolism also provides an easy preparative method for the 

production of metabolites in large quantity. 

The use of fungi as a method of bioremediation provides 
an option to clean up environmental pollutants. Bioremedia-
tion using fungi has drawn little attention in the past two 
decades since most bioremediation research has focused 
mainly on the use of bacteria. Nevertheless, recently fungi 
have received considerable attention for their bioremediation 
potential which is attributed to the enzymes they produce. In 
addition, fungi have advantages over bacteria such as fungal  
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hyphae that can penetrate contaminated soil to reach the pol-
lutants [2]. This review, with approximately 300 references 
covering the period 2005-2008, will highlight the main ap-
plications of fungi to the biodegradation of organic contami-
nants to less toxic compounds in order to clean up environ-

mental pollutants.  

2. BIODEGRADATION OF CHEMICAL POLLU-
TANTS BY FUNGI 

The revolutionized development of resources and tech-
nologies has produced more chemicals and compounds 
which has consequently increased the number of compounds 
identified as being potential environmental threats to living 
organisms. Pharmaceuticals and personal care products 
(PPCPs), surfactants, various industrial additives and numer-
ous chemicals are purported to be pollutants. These pose 
challenges to the designers of future treatment plants and 
related methodology for their eradication [3].  

These pollutants vary greatly in their form and mecha-
nism of action. Thus, the identification and evaluation of 
these compounds from the environmental matrixes have pro-
vided a unique challenge. The methodologies used for deg-
radation include biological and instrumental methods. The 
new advances in molecular biology and the isolation of new 
microorganisms from contaminated environments form the 
basis of bioremediation emerging as a clean and low-cost 

methodology for the future. 

Aromatic Hydrocarbons 

The biodegradation of aromatic hydrocarbons by fungi 

has traditionally been considered to be of a cometabolic na-

ture. Recently, however, an increasing number of fungi iso-

lated from air biofilters exposed to hydrocarbon-polluted gas 

streams have been shown to assimilate volatile aromatic hy-

drocarbons as the sole source of carbon and energy. The bio-

systematics, ecology, and metabolism of such fungi were 

reviewed, based in part on the re-evaluation of a collection of 

published hydrocarbon-degrading isolates obtained from 

authors around the world [4]. For example, the degradation 

performance of benzene, toluene, styrene and xylene by 

fungi was widely studied [5, 6]. Moreover, biodegradation of 

monomeric styrene by Phanerochaete chrysosporium KFRI 
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20742, Trametes versicolor KFRI 20251, and Daldinia con-

centrica KFRI 40-1 was carried out by Lee et al. [7], giving 

metabolites including 2-phenyl ethanol, benzoic acid, cyclo-

hexadiene-1,4-dione, butanol and succinic acid.  

Oil pollution has become an environment problem which  

has been paid wide attention in the world. Bioremediation  
technology applied to oil contaminated soil has become an  

important field in research for its advantages such as low 

cost, little environmental effect, simplicity and efficiency 
and has a bright perspective for the future. The main research 

fields relating to the bioremediation of oil contaminated soil 

were put forward employing fungi [8] such as Trichoderma 
sp. [9]. Thus, naphthalan petroleum was studied using fungi 

cultures to obtain degrader strains as Penicillium sp. 3n, 

Fusarium sp. 11a, Cephalosporium sp. 45a, and Mucor sp. 
16 [10, 11]. Also, the fungus Cladosporium proved to have 

good aromatic-degrading ability to biodegrade diesel pollu-

tion in aqueous solution [12] and crude oil contaminated 
soils were used to test the degradation ability of Pleurotus 

tuber-regium where reduction of aromatics was appreciable 

in all the experiments [13]. Moreover, fuel oil A contami-
nated sites were investigated for degradation by Fusarium 

solani SZFWT02 showing a great biodegradation activity 

[14].  

Polycyclic aromatic hydrocarbons (PAHs) are toxic pol- 
lutants that have accumulated in the environment due to a  
variety of anthropogenic activities. Bioremediation using  
various microorganisms is one of the approaches tested for  
the removal of PAHs from the environment. Fungi belonging  
to the genera Aspergillus, Penicillium, Paecilomyces, Corio- 
lus, Pycnoporus, Pleurotus, Fomitopsis, and Daedalea, have 
been found to be responsible for degrading PHAs in soil and  
aquatic environments [15]. The degradation potential of  
white rot fungi belonging to the genera Phanerochaete, Ir- 
pex, Polyporus, Stereum, Lentinus, Bjerkandera, Irpex, Pleu- 
rotus, and Phlebia to remediate contaminated soils [16-22] is 
known. The most effective biodegradation of pyrene was  
obtained with Coriolus versicolor, Trichoderma sp., Asper- 
gillus niger, and Fusarium sp. [1, 23]. Other lignolytic fungi,  
Allescheriella sp. strain DABAC 1, Stachybotrys sp. strain  
DABAC 3, and Phlebia sp. strain DABAC 9 were selected  
for remediation of naphthalene, dichloroaniline isomers, o- 
hydroxybiphenyl and 1,1'-binaphthalene [24]. For anthracene  
(AC) degradation, Tetrahymena pyriformis accumulated high  
amounts of AC without any transformation. In contrast, the  
fungi Absidia cylindrospora, A. fusca, Cunninghamella ele- 
gans, Aspergillus terreus, Cladosporium herbarum, Penicil- 
lium chrysogenum, Rhodotorula glutinis, and Saccharomyces  
cerevisiae, were able to transform AC to 1,4-dihydroxy- 
anthraquinone as a product of biotransformation [25]. Bio- 
degradation of phenanthrene by Thrichoderma sp. S019 af- 
forded 1-hydroxy-2-naphthoic acid, salicylaldehyde, sali- 
cylic acid, and catechol as intermediates in the bioremedia- 
tion process [26]. In addition, Cunninghamella elegans IM 
1785/21Gp gave the metabolites trans-1,2,3,4- and 9,10- 
dihydrodiols, phenols, diphenols (diols), and glycoside con- 
jugates of 1-,2-,3-,4-, and 9-phenanthrols [27]. Other ex- 
periments based on co-cultures were carried out with two  
fungi, Aspergillus terreus and Penicillium sp., and the bacte- 
rial strain Rhodococcus sp. IC10 [28]. Moreover, using  

Fusarium solani, a high degradation of phenantrene was  

obtained in free cultures and immobilized [29, 30, 31].  

In the meanwhile, Li et al. [32] reported the biodegrada- 
tion of 1,2,3,4-tetrahydronaphthalene (THN) by the marine  
fungus Hypoxylon oceanicum (326#) giving one major prod- 
uct, 3,4-dihydro-4-hydroxy-1(2H)-naphthalenone, and three  
minor products: 3,4-dihydro-1(2H)-naphthalenone, 1,2,3,4- 
tetrahydro-1-naphthalenol, and 1,2,3,4-tetrahydro-1,2- 

naphthalenediol. 

Other PAHs were tested for fungi biodegradation such as 
benzo( )anthracene, benzo( )fluoranthene, benzo( )pyrene 
(1), and chrysene, which were biodegraded by Fusarium 
flocciferum, Trichoderma species, Tremetes versicolor, and 
Pleurotus ostreatus [33]. Benzo( )pyrene (BaP) (1) is a 5-
ring polycyclic aromatic hydrocarbon and a large number of 
fungi were tested for its degradation such as Trichoderma 
sp., Aspergillus niger, Mucor sp., and Fusarium sp. [19, 34, 
35, 36]. Fusarium sp. E033 was able to biodegrade 65-70% 
of the initial benzo( )pyrene (1) provided giving two trans-
formation products, dihydroxy dihydro-benzo( )pyrene and 
benzo( )pyrene-quinone [37]. Meanwhile, Penicillium 
chrysogenum SF04 had the highest degradation of BaP (1) 
(up to 71.31 %) [38]. Furthermore, benzo( )anthracene was 
degraded by Irpex lacteus affording 2-hydroxymethyl ben-
zoic acid or monomethyl- and dimethyl-esters of phthalic 
acid and 1-tetralone as final products [39]. However, a high 
degree of benzo( )pyrene (1) degradation is undesirable for 
the bioremediation of BaP-contaminated soils because some 
of its accumulated metabolites still have severe health risks 
for humans such as benzo( )pyrene-1,6-quinone (BP1,6-
quinone) (2) and 3-hydroxybenzo( )pyrene (3-OHBP) (3) 

(Scheme 1) [40].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Degradation of BaP (1) by fungi. 

Other groups of important aromatic contaminants are 
phenols and derivatives. The major sources of phenol 
contamination are the chemical and petrochemical industries, 
agriculture (pesticides, containing hydrocarbons), wood 
processing as part of papermaking technologies, textile in-
dustry, etc. The ubiquitous nature of phenols, their toxicity 
even in trace amounts and the stricter environmental regula-
tions make it necessary to develop processes for the removal 
of phenols from wastewaters. Biodegradation allows for the 
utilization of aromatic hydrocarbons by the biological agent 

and for their re-entrance into the carbon cycle [41].  
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Along these lines, white-rot fungi have been shown to 
exhibit unique biodegradation capabilities for phenols [42, 
43, 44]. For instance, the fungus Panus tigrinus CBS 577.79 
was investigated for its ability to reduce the polluting load of 
olive-mill wastewater (OMW) with a significant presence of 
phenolic components [45]. 

On the other hand, strains from Fusarium were able to 
reduce aromatic components by 65% in olive-mill dry resi-
due (DOR) [46]. Moreover, Fusarium sp. HJ01 was able to 
grow using phenol as the only carbon resource giving the 
intermediate catechol as a biotransformation product [47, 
48]. The fungus Trametes versicolor was capable of decol-
ouring and degrading phenol compounds from paper mill 
effluent [49, 50, 51]. 

As the symbiotic fungi and plant, mycorrhiza was able to 
degrade organic pollutants [52]. Some conifer ectomycorrhi-
zae can degrade and detoxify water-solution phenolic com-
pounds produced by the conifer Kalmia angustifolia. Thus, 
Paxillus involutus, Laccaria laccata, and L. bicolour were 
employed to degrade water leachates of Kalmia leaf and lit-
ter. Pure ferulic, o-coumaric, and o-hydroxyphenylacetic 
acids were degraded by 100, 98, and 79.5%, respectively, in 

the presence of P. involutus 211804 [53].  

The biodegradation of polychlorophenols (PCBs) [54], an 
important group of phenols which have been used as fungi-
cides, herbicides, insecticides, and in the synthesis of other 
pesticides, has been widely studied [55-58]. The white-rot 
fungus Phlebia brevispora was shown to be able to degrade 
PCBs obtaining m-methoxylated, p-dechlorinated and p-
methoxylated metabolites [59]. 4,4’-Dichlorobiphenyl (4,4’-
DCB) and its metabolites were added to cultures from Phan-
erochaete sp. and the metabolic pathway was elucidated by 
the identification of metabolites namely 2-hydroxy-4,4'-DCB 
and 3-methoxy-4,4'-DCB, 4-chlorobenzoic acid, 4-
chlorobenzaldehyde, 4-chlorobenzyl alcohol, and 4-hydroxy-
3,4'-DCB [60, 61, 62]. Fungi Phlebia sp., Phanerochaete 
chrysosporium, and Mortierella sp. were also selected to 
degrade different chlorobenzoic acids (CBA) [63] giving 
some aromatic metabolites from a hydroxylation pathway 
and a dechlorination pathway [64]. Furthermore, 
Bjerkandera adusta, Anthracophyllum discolour, immobi-
lized and non-immobilized Phanerochaete chrysosporium 
[65], Trametes versicolor isolate HR131, and Trametes sp. 
isolate HR577 were studied in the degradation of pentachlo-
rophenol [51, 66, 67, 68]. Fungi Boletus edulis, Suillus lu-
teus, Cortinarius russus, Suillus grevillei, Gomphidius vis-
cidus, Laccaria bicolor, Leccinum scabrum, Xerocomus 
chrysenteron, Heboloma crustuliniforme, and H. longi-
caudum were grown in media with different substrate con-
centrations of pentachlorophenol (PCP) to determinate their 
effect on fungal growth. No impact on the growth of the my-
celia was observed at low ambient PCP levels. In addition, 
the high tolerance capability for pentachlorophenol may be 
related to their oxidoreductase activities and acidification 

effect [69].  

Whereas, Aspergillus awamori NRRL 3112 degraded 
phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxy-
phenol as well as Peniophora cinerea, Psilocybe castanella, 
two strains of Trametes villosa, Agrocybe perfecta, Trichap-
tum bisogenumand and Lentinus villosus were able to colo-
nize soil containing up to 4600 mg pentachlorophenol/kg 

soil. All fungi produced chloride ions during degradation, 
indicating dehalogenation of the molecule [70]. Moreover, 
Taseli et al. [71] studied the potential of the fungus Penicil-
lium camemberti, which degraded pentachlorophenol (PCP), 

2-chlorophenol and trichloroacetic acid.  

Other phenolic compounds with special activities are 
nonylphenols (4) and bisphenol A (5) (BPA), known as en-
docrine-disrupting compounds. Technical nonylphenol (t-
NP) mixtures (4) were assessed using the mitosporic fungal 
strain UHH 1-6-18-4 and a strain of the aquatic hyphomycete 
Clavariopsis aquatica. All t-NP isomers were degraded to 
individual extents [72]. On the other hand, Soares et al. [73] 
showed that the fungi Phanerochaete chrysosporium, Pleu-
rotus ostreatus, Trametes versicolor and Bjerkandera sp. 
BOL13 degraded nonylphenol (4) at an initial concentration 
of 100 mg/L. In addition, bisphenol A (5) was biodegraded 
with several white rot fungi (Irpex lacteus, T. versicolor, 
Ganoderma lucidum, Polyporellus brumalis, Pleurotus 
eryngii, Schizophyllum commune) isolated in Korea and two 
transformants of T. versicolor (strains MrP 1 and MrP 13) 
[74]. Stereum hirsutum and Heterobasidion insulare showed 

high resistance to BPA (5) [75].  

Further results showed the potential of the fungi Basidio-
radulum molare and Schizopora paradoxa to degrade pheno-
lic compounds such as 4-tert-octylphenol [76]. Moreover, 
van Beek et al. [77] reported the degradation of dehydroabi-
etic acid (DHA) (6) from Scots pine wood by Trametes ver-
sicolor and Phlebiopsis gigantea in liquid stationary cul-
tures, isolating some biodegradation products from P. gigan-
tea cultures: 1 -hydroxy-DHA (7), 1 ,7 -dihydroxy-DHA 
(8), 1 ,16-dihydroxy-DHA (9), and tentatively 1 -hydroxy-
7-oxo-DHA (10) and T. versicolor cultures, 1 ,16-

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2. Fungal biotransformation products of dehydroabietic 

acid (6). 
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dihydroxy-DHA (9), 7 ,16-dihydroxy-DHA (11), 1 ,7 ,16-
trihydroxy-DHA (12), 1 ,16-dihydroxy-7-oxo-DHA (13), 
1 ,15-dihydroxy-DHA (14), and 1 ,7 ,16-trihydroxy-DHA 
(15) (Scheme 2). Also, Candida tropicalis was tested on the 
reduction of free gossypol (16), a polyphenol derived from 
the cotton plant. This biodegradation was evaluated through 
optimization of the parameters in order to operate under op-

timal conditions [78].  

Indeed, polychlorinated dibenzo-p-dioxins (PCDDs) and 
polychlorinated dibenzofurans (PCDFs), commonly known 
as dioxins (PCDD/Fs) [79], are toxic environmental pollut-
ants formed from various sources. Removal of dioxins by 
biological degradation is considered a feasible method as an 
alternative to other expensive physic-chemistry approaches 
[80]. Different dibenzo-p-dioxins and dibenzofurans 
(PCDD/Fs) were studied for degradation by fungi such as 
Phlebia radiata I-5-6 [81, 82, 83], P. acerina, P. lindtneri 
and P. brevispora which can hydroxylate and methoxylate 
PCDDs [84], and Phanerochaete chrysosporium DSM 6909, 
P. chrysosporium DSM 1556, Irpex sp. W3, Trametes sp. 
CH2, Fusarium sp. VSO7 [85], and Pleurotus pulmonarius 

[86]. Biodegradation of 2,8-dichlorodibenzo-p-dioxin (2,8-
DCDD) (17), 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-
TCDD) (18), 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) 
(19), and 2,4,8-trichlorodibenzofuran (2,4,8-TCDF) (20) was 
conducted with two fungi (PL1 and 267) already screened 
from nature [87]. Furthermore, 2,8-DCDD (17) and 2,3,7,8-
TCDD (18) were also degraded by those fungi, giving com-
pounds considered to be intermediates, namely 4-chloro-
catechol (21) and 4,5-dichlorocatechol (22) respectively [88, 
89]. Chlorocatechol (21), 3,5-dichlorosalicylic acid (23) and 
5-chlorosalicylic acid (24) were isolated from 2,7-DCDD 
(19) and 2,4,8-TCDF (20), respectively (Scheme 3) [90].  

Lastly, other aromatic pollutants have been tested for 
bioremediation. Quinoline (25) was biodegraded by Pleuro-
tus ostreatus BP resulting in total mineralization and some 

fermentation products [91].  

As the use of hydrocarbons by the microorganisms is as-
sociated with biosurfactant production, biodegradation by 
Aspergillus niger and Penicillium nigricans was also inves-
tigated [92]. Another A. niger strain namely PSH is capable 
of degrading tannins giving gallic acid (26) and ellagic acid 
(27) [93]. Martin et al. [94] reported the degradation of gal-
axolide (HHCB) (28) and tonalide (AHTN) (29), two mi-
cropollutants from aquatic environments, by Myrioconium 
sp. strain UHH 1-13-18-4 and Clavariopsis aquatica. The 
products obtained were the result of hydroxylations at differ-
ent positions. Polyporus brumalis was applied to degrade 
dibutyl phthalate (DBP), the main product being phthalic 
acid anhydride as well as trace amounts of -hydroxy-
phenylacetic acid, benzyl alcohol, and -hydroxyphenyl-

acetic acid [95].  

 

 

 

 

 

 

 

 

 

 

Scheme 3. Biodegradation of the polychlorinated dioxins 17-20. 
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Additionally, degradation of refractory organic matter 
(OM) by the basidiomycete fungus Schizophyllum commune 
and white rot fungi was reported. Main products of the bio-
degradation were organic heavy metal complexes which can 

enter the environment [96, 97].  

Moreover, indole degradation was studied by Sporo-
trichum thermophile and Pleurotus ostreatus with more than 
a 99% consumption rate of indole [98, 99]. Biodegradation 
of p-cresol by Gliomastix indicus was studied [100].   

Aliphatic Hydrocarbons 

Fungi can also degrade n-alkanes such as tridecane, tet-

radecane, pentadecane, hexadecane, heptadecane, octadecane 

(C13-C18) and crude Omani oil. Biodegradation by the fungi 

Aspergillus niger, A. ochraceus, Trichoderma asperellum 

strain TUB F-1067 (SA4), T. asperellum strain Tr48 (SA5), 

T. asperellum strain TUB F-756 (SA6), Penicillium species 

(P1), and Aspergillus species (P9) was studied [101]. Among 

these fungi, the P1 strain exhibited greater potential in de-

grading the aliphatic hydrocarbon compounds of used motor 

oil [2].  

Some of the most important aliphatic hydrocarbon pol-

lutants are n-eicosane, which was degraded by Trichoderma 

sp. S019 affording nonadecanoic acid, n-octadecane, hexa-

decanoic acid, oleic acid and stearic acid as reaction products 

[102]. Imidazolium compounds (ICs) and quaternary ammo-

nium compounds (QACs) were degraded by two strains of 

Gliocladium roseum, Penicillium brevi-compactum, P. fu-

niculosum, Phialophora fastigiata, Verticillium lecanii 

[103]. Carbon tetrachloride (CT) [104], trichloroethylene 

(TCE) and perchloroethylene (PCE), one of the most impor-

tant groundwater pollutants, were tested for degradation by 

fungi. The aerobic degradation of PCE was reported for the 

first time by Trametes versicolor, giving 2,2,2-trichloro-

ethanol and CO2 as main byproducts from TCE degradation, 

and trichloroacetic acid (TCA) from PCE [105]. Moreover, 

Ganoderma lucidum and Irpex lacteus were able to degrade 

substantial levels of perchloroethylene (PCE) and 

trichloroethylene (TCE) in pure culture [106].   

Another white-rot fungi, Bjerkandera adusta, was able to 

degrade hexachlorocyclohexane (HCH) isomers giving 1-(3-

chloro-4-methoxyphenyl)ethanone and (2,4-dichloro-3-

methoxy)-1-benzenecarbonyl chloride demonstrating the 

capability of B. adusta to produce these types of organochlo-

rine compounds [107].  

Compounds with different activities have been investi-
gated for biotransformation including the sesquiterpene 
botrydienediol (30) by Botrytis cinerea affording three new 
sesquiterpenoids [108]. Wang et al. [109] studied the biodeg-
radation by several fungi of digitoxin (31), a cardiac glyco-
side that is presumed to be effective in the treatment of heart 
failure. Curvularia lunata AS3.3589 and Absidia coerulea 

CICC40302 gave some biotransformation products.   

Cyanide Compounds 

Organic and inorganic cyanide compounds are widely 
distributed on the planet and they are among the most com-
mon corrosive pollutants. Most people associate the word 
cyanide with an extremely dangerous and fast-acting poison. 
However, there are several cyanide species, of varying toxic-
ity, depending on the source of cyanide contamination. Free 
cyanide is the most toxic form and is easily and rapidly ab-
sorbed through inhalation, ingestion or skin contact. Thiocy-
anates are much less toxic than free cyanide and iron-

complexed cyanides are only mildly toxic [110]. 

The degradation of simple cyanides has also been dem-
onstrated in fungi [111, 112]. A fungal mutant of Tricho-
derma koningii, TkA8, constructed by restriction enzyme-
mediated integration, was shown to have a high cyanide deg-
radation ability [113]. As shown by Hossain et al. [114], 
Trametes versicolor ATCC 200801, Phanerochaete chryso-
sporium ME 496 and Pleurotus sajorcaju tolerated up to 

500-ppm initial concentration of cyanide.   

3. PESTICIDES 

The agricultural industry’s dependency on chemicals to 
sustain productivity in marginal landscapes has led to a 
global-scale contamination of the environment with toxic 
pesticides and nutrient fertilizers which are changing the 
course of biogeochemical cycles. They include fungicides, 
insecticides, and herbicides and are one of the causes of wa-
ter pollution, and some pesticides are persistent organic pol-
lutants contributing to soil contamination. Among the tech-
niques employed to remove these contaminants, biodegrada-
tion is very effective, less contaminating and cheaper than 

others. 

Fungicides 

Biphenyl (32) and the monohydroxylated derivatives 2-
hydroxy- and 4-hydroxybiphenyl are known to be fungistatic 
substances. These compounds are widely used for the con-
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servation of citrus fruits, even though biphenyl (32) is known 
for its toxic effects on humans. The filamentous fungus Ta-
laromyces helicus oxidized biphenyl (32) to the hydroxylated 
derivatives 4,4´-dihydroxybiphenyl (33), 3,4-dihydroxy-
biphenyl (34), 2-hydroxybiphenyl (35), 2,5-dihydroxy-
biphenyl (36), and the ring cleavage product 4-phenyl-2-

pyrone-6-carboxylic acid (37) (Scheme 4) [115]. 

Tribromophenol (TBP) is used in wood preservation. 
Trametes versicolor and Agaricus augustus proved effective 
in decreasing TBP concentrations and A. augustus was also 
capable of biotransforming TBP to tribromoanisole (TBA) 
[116]. Other fungi employed for the degradation of this fun-
gicide were Laetoporeus sulfureus, Gloephyllum trabeum, 
and Ganoderma australe in liquid culture, and were able to 
degrade TBP, degradation by G. australe being the most 

efficient (71% to 77%) [117].  

In addition, widdrol (38) has shown activity against the 
necrotrophic plant pathogen Botrytis cinerea. The biotrans-
formation of 38 by B. cinerea and Colletotrichum gloeo-
sporioides afforded four and one biotransformation products 
(39-43), respectively. Biotransformation with C. gloeo-
sporioides yielding for the most part oxidation products at C-
10: 10-oxowiddrol (39), 10 -hydroxywiddrol (40), 10 -
hydroxywiddrol (41), and 14 -hydroxywiddrol (42). The 
biotransformation products were then tested against B. cine-

rea and found to be inactive [118].  

Another group of pesticides with fungicide activity is 
tributyltin (44) compounds, a group of compounds contain-
ing the (C4H9)3Sn moiety. The filamentous fungus Cunning-
hamella elegans was able to degrade tributyltin chloride 
(TBT) giving less toxic compounds, dibutyltin and monobu-
tyltin [119, 120]. 

Insecticides 

Some insecticides have been degraded by several fungi. 
For instance, endosulfan (45), widely employed as pesticide 
(insecticide and acaricide), was degraded by Chaetosartorya 
stromatoides, Aspergillus terricola, and A. terreus showing 
degradation rates of up to 75% [121]. In other studies using 
A. niger, various intermediates of endosulfan (45) metabo-
lism including endosulfan diol and endosulfan sulfate were 

isolated [122].   

Romero et al. [123] reported the biodegradation of 
toxaphene (46) in waste substrates by the fungus 
Bjerkandera sp. strain BOL13. One of the most important 
insecticides that is extensively used and toxic is lindane (47) 
[124], which was tested for biodegradation by nonwhite rot 
fungi [125] and white-rot fungi such as Phanerochaete 
chrysosporium, Trametes hirsutus, Bjerkandera adusta, and 
Pleurotus sp. [126, 127]. Also imidacloprid (48), a class of 
neuro-active insecticide modeled after nicotine, was de-

graded by Calocybe indica [128].  

 

 

 

 

 

Scheme 4. Biodegradation of biphenyl (32) by Talaromyces elicus. 
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Another example of insecticide biodegraded by several 
fungi is carbofuran (49), which was added to cultures of 
Gliocladium [129] and Mucor ramannianus affording 2-
hydroxy-3-(butan-2-ol)phenol (50) and 3-hydroxycarbo-
furan-7-phenol (51) as transformation products (Scheme 5) 

[130]. 

Brown-rot fungi were also investigated for their ability to 

degrade 1,1,1-trichloro-2,2-bis (4-chlorophenyl)ethane 

(DDT), as well as white-rot fungi [131] and ectomycorrhizal 

fungi [132]. For instance, Gloeophyllum genus, Daedalea 

genus, and Fomitopsis genus showed a high ability to de-

grade DDT affording 1,1-dichloro-2,2-bis (4-chlorophenyl) 

ethane (DDD), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene 

(DDE), and 4,4-dichlorobenzophenone (DBP) as metabolic 

products [133].  

-Cyfluthrin (52), a synthetic pyrethroid insecticide, was 

biotransformed by Aspergillus nidulans and Sepedonium 

maheswarium to 4-fluoro-3-phenoxybenzaldehyde and 3-

(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic 

acid [134].  

Seo et al. [135] reported the biotransformation of N,N-
diethyl-m-toluamide (DEET) (53), a topical insect repellent, 
by Cunninghamella elegans ATCC 9245, Mucor ramanni-
anus R-56, Aspergillus niger VKMF-1119, and Phanero-
chaete chrysosporium BKMF-1767 to N,N-diethyl-m-

toluamide-N-oxide (54), N-ethyl-m-toluamide-N-oxide (55), 

and N-ethyl-m-toluamide (56) (Scheme 6).  

The biodegradation by the strain Aspergillus nomius L3 
of the insecticide dimethoate (57) as a cosubstrate was re-
ported by Ai et al. [136]. In addition, methoxychlor (58) was 
converted to 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethane, 
2,2-dichloro-1,1-bis(methoxyphenyl)ethylene, 2-chloro-1,1-
bis(4-methoxyphenyl)ethane, 2-chloro-1,1-bis(4-methoxy-
phenyl) ethylene, and 1,1-bis(4-methoxyphenyl)ethylene by 

Stereum hirsutum [137].  

Lastly, Osman et al. [138] studied the biotransformation 
of dicofol pesticide (DCF) (59) by Trichoderma viride and T. 
harzianum with no intermediate or final degradation metabo-
lites isolated. Fenitrothion breakdown product 3-methyl-4-
nitrophenol (MNP), a newly characterized estrogenic chem-
ist, was biotransformed by Aspergillus niger VKM F-1119 to 
2-methyl-1,4-benzenediol, 4-amino-3-methylphenol, and two 

singly hydroxylated products [139].  

Herbicides 

Herbicides are widely used in agriculture to kill unde-
sired plants. However, because of the large number of herbi-
cides in use, there is significant concern regarding health 
effects which make their elimination from soil and water, an 

important focus of study.  

 

 

 

 

 

 

 

 

 

Scheme 5. Biodegradation of carbofuran (49) by Mucor ramannianus. 

 

 

 

 

 

 

Scheme 6. Biodegradation of N,N-diethyl-m-toluamide(53). 
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For example, ectomycorrhizal fungi from rice were 
evaluated for their applicability in studies of herbicide deg-

radation. One of those strains was studied for its ability to 

degrade propanil (60) and its metabolite 3,4-dichloroaniline 
(3,4-DCA) [140]. Other fungi capable of degrading herbi-

cides such as sulfentrazone (61) were Chrysosporium sp., 

Eupenicillium sp., and Paecilomyces sp [141]. Romeh et al. 
[142] investigated the degradation of fluometuron (62) her-

bicide by Trichoderma viride, Metarhizium anisopliae, and 

Beauveria bassiana showing biodegradation rates up to 85%.  

Other herbicides were also employed to study their bio-
degradation by fungi, such as isoproturon (63), which was 
converted by Phoma eupyrena, Mucor hiemalis, and Mor-
tierella sp. to hydroxylated metabolites N-(4-(2-hydroxy-1-
methylethyl)phenyl)-N',N'-dimethylurea (64) and N-de-
methylated metabolite N-(4-isopropylphenyl)-N'-methylurea 
(MDIPU) (65) (Scheme 7) [143]. Chlornitrofen (CNP) (66) 

was studied for biodegradation by Phlebia brevispora 
TMIC33929. In the degradation experiment using CNP (66) 
standard compounds, CNP (66) was transformed into several 
metabolites including monomethoxylated compounds and 
2,4,6-trichlorophenol [144]. Another example of herbicide is 
glyphosate (67), a systemic non-selective herbicide, which 
was degraded by Fusarium sp. [145]; Zhu et al. [146] inves-
tigated the biodegradation by fungi of acetochlor (68) in soil. 
The effects of metsulfuron-methyl (69), a sulfonylurea her-
bicide, on soil microorganisms were evaluated in various 
experiments showing that fungi such as Penicillium sp. were 

highly tolerant [147, 148]. 

Metals 

Soil contamination by toxic metals has become a serious 
problem, because of their long-term persistence and their 
diffusion into underground water. Heavy metal and non-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 7. Biodegradation of isoproturon (63) by fungi. 
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degradable chemical contamination of soil and water is a 
major environmental threat. In recent years, worldwide re-
searchers are investigating new sustainable methods to miti-
gate such environmental contamination, such as biodegrada-

tion by fungi.  

The common filamentous fungi can absorb heavy metals 
(Zn, Cd, Pb, Fe, Ni, Ag, Th, Ra & U) from aqueous solu-
tions. The availability of a variety of fungi with different 
characteristics and metal binding potential makes it an eco-
nomical and sustainable option for the removal and recovery 

of heavy metals [149].  

Contaminated soil containing sulfide ore ashes and aro-

matic hydrocarbons could be treated with a metal-resistant 

strain BAS-10 of Klebsiella oxytoca and other fungi added to 

the soil, Allescheriella sp. DABAC 1, Stachybotrys sp. DA-

BAC 3, Phlebia sp. DABAC 9, Pleurotus pulmonarius CBS 

664.97, and Botryosphaeria rhodina DABAC P82. B. 

rhodina was the most effective fungus leading to the deple-

tion of the most abundant contaminants [150].  

Baldi et al. [151] developed a novel process combining 

sequential treatments of contaminated soil from the ACNA 

site (Cengio, Savona, Italy). The soil was leached to remove 

metals in the following order: Pb (74.2%) > Cu (72.6%) > 

Zn (40.2%) > Ni (55.7%) > Cd (41.5%) > Cr > (21.7%) Co > 

(19%) Fe (8.2%). The leachate was then incubated with the 

metal-resistant Klebsiella oxytoca strain BAS-10 and 

Allescheriella sp. DABAC 1 leading to a complete degrada-

tion of several organic contaminants.  

Several metal ions were bioremediated by fungi. For in-

stance, the treatment of the simulated lead-contaminated 

solid waste by composting with white-rot fungus was studied 

in the laboratory [152]. The white-rot basidiomycete Phan-

erochaete chrysosporium was very effective in the bioreme-

diation of Pb-contaminated soil [153]. The Pb(II) biosorption 

potential of Aspergillus parasiticus [154] and the macro-

fungus Ganoderma carnosum [155] were also studied in a 

batch system and biosorption conditions were optimized 

showing that biosorption potential depended on physico-

chemical parameters. Tunali et al. [156] reported the 

biosorption of Pb(II) onto Cephalosporium aphidicola and 

the nature of the possible cell and metal ion interactions was 

examined by the FTIR technique. Moreover, the potential of 

Botrytis cinerea as a biosorbent for metal ions such as Zn(II) 

and Pb(II) was studied. Competitive biosorption experiments 

were performed with Zn(II) in the presence of Cu, Cd, and 

Ni ions simultaneously [157], demonstrating that other com-

peting metal ions (Cu(II), Cd(II), and Ni(II) co-cations) re-

duced the biosorption capacity on Pb(II) and Zn(II) [158]. 

Aspergillus flavus and Neurospora crassa fungal biomass 

were also able to absorb Pb(II) and Cu(II) under optimum 

conditions [159, 160]. Cr(VI) biosorption with Trichoderma 

viride, Aspergillus niger, A. sydoni, and Penicillium janthi-

nellum biomass was studied by Bishnoi et al. [161] showing 

that biosorption of Cr(VI) was pH dependent and the maxi-

mum adsorption was at pH 2.0. Cr(VI) removal was 91.03% 

using A. niger and 87.95% and 86.61% with A. sydoni and P. 

janthinellum [162]. Lastly, the brown-rot fungus Lentinus 

edodes was used as an efficient biosorbent for the removal of 

Cd from water and three kinds of adsorption models were 

applied to simulate the biosorption data [163].   

Mercury is one of the most harmful ion metals and its 
biotransformation by fungi was investigated in Hymenoscy-
phus ericae, Neocosmospora vasinfecta, and Verticillium 
terrestre following the exposure of these fungi to environ-
mentally relevant doses of Hg (II) (HgCl2) in aerated pH-
controlled cultures [164].   

Industrial Dyes 

Dyes, originally obtained exclusively from natural 
sources, are today also produced synthetically on a large 
scale and represent one of the very mature and traditional 

sectors of the chemical industry.  

Different dyes and pigments are extensively used in the 
textile, paper, plastic, cosmetics, pharmaceutical and food 
industries. Most of the earlier dye decolourization studies 
were based mainly on white-rot fungi such as Phanerochaete 
chrysosporium, Trametes versicolor, Phellinus gilvus, Pleu-
rotus sajor-caju, Pycnoporus sanguineus, Dichomitus 
squalens, Irpex flavus, Daedalea flavida, Polyporus san-
guineus, Funalia trogii ATCC200800, Ischnoderma resino-
sum [165], Dichomitus squalens [166], and Ganoderma sp 

[167-170]. 

Textile industries consume large amounts of water and 
their effluents contain a wide range of contaminants. These 
contaminants are dyes with strong colour, inorganic salts, as 
well as high pH. Textile wastewater containing significant 
concentrations of dyes cause substantial treatment problems. 
Most of the dye molecules have a polyaromatic structure 
with a high molecular weight and contain atoms of nitrogen, 
sulfur and metals making it very difficult to break them 
down [171]. Biological methods are emerging as an effective 
alternative for chemical approaches. For instance, fungi have 
shown a strong resistance to dye toxicity and it would there-
fore be a good idea to study fungal strains to identify the 
potential fungal candidates for dye removal and biodegrada-

tion [172-177].   

White-rot fungi have been widely employed to biode-
grade textile dyes [178-181]. Thus, Sukumar et al. [182] 
investigated the decolourizing ability of Phanerochaete sp. 
and Trametes sp., recording colour reduction of 82.01% and 
76.07% respectively [183]. The potential of Trametes villosa 
and Pycnoporus sanguineus to decolourize reactive textile 
dyes was evaluated, T. villosa being the best degrader [184]. 
The characteristics of biodegradation of the classical 
triphenylmethane dyes such as Crystal Violet (70), Malachite 
Green (71), and Bromophenol Blue (72) were reported by 
white rot fungi in rice straw media [185, 186, 187]. Yan et 
al. [188] studied the decolourization by biosorption using 
dead white rot fungus Pleurotus ostreatus BP, whose decol-
ourization rate for Remazol Brilliant Blue R (RBBR) (73) 

reached 82.35%.  

Synthetic dyes are released in wastewater from textile 
manufacturing plants, and many of these dyes are genotoxic. 
For instance, Irpex lacteus was used for mutagenicity assays 
showing that all dyes except Congo Red (CR) (74) were 
mutagenic, indicating that the combined biodegradation 
process may be useful for reducing the mutagenicity associ-
ated with wastewater from textile industries [189]. The bio-
degradation of Methyl Orange (75), Yellow RR Gran, Congo 
Red (74), Bismarck Brown (76), Brilliant Red K-2BP (77), 
and the azo dye Remazol Red RR Gran in cultures of the 
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white rot fungus Phaenerochaete chrysosporium was dem-
onstrated by decolourization studies [190, 191, 192, 193]. 
Moreover, the ability to decolourize eight chemically differ-
ent synthetic dyes (Orange G (78), Amaranth (79), Orange I 
(80), Remazol Brilliant Blue R (RBBR) (73), Cu-
phthalocyanin, Poly R-478 (81), Malachite Green (71) and 
Crystal Violet (70)) by the white rot fungus Dichomitus 

squalens was evaluated showing high decolourization capac-

ity for all dyes tested, but not to the same extent [194].  

Asgher et al. [195, 196] investigated the indigenous 
white rot fungi Pleurotus ostreatus IBL-02, Phanerochaete 
chrysosporium IBL-03, Coriolus versicolor IBL-04, Gano-
derma lucidum IBL-05, and Schizophyllum commune IBL-06 
for decolourization of several textile dyes. The results 
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showed that P. chrysosporium could decolourize all the dyes 
tested, and C. versicolor IBL-04 degraded all the dyes, ex-
cept Drimarene Orange K-GL. Moreover, P. ostreatus also 
showed good decolorization efficiencies on all dyes, except 
Remazol Brilliant Yellow. However, the rest of the strains 
showed poor decolourization potential. In addition, S. com-
mune IBL-06 and G. lucidum IBL-05 were able to degrade 
Solar Golden Yellow R [197], Solar Orange RSN [198], and 
Cibacron Red FN-2BL [199].  

Moreover, Machado et al. [200, 201] studied the poten-
tial of basidiomycetous fungi isolated from tropical ecosys-
tems to remove Remazol Brilliant Blue R (RBBR) (73) dye. 
Trogia buccinalis showed the highest RBBR (73) decolouri-

zation.  

Removal of water-solution sulfonated azo dyes from tex-
tile industry effluents is a major issue in wastewater treat-
ment [199]. Biodegradation of sulfonated azo dyes was stud-
ied using white-rot fungi affording 4-hydroxy-benzene-
sulfonic acid, 3-methyl-4-hydroxy-benzenesulfonic acid, 
benzenesulfonic acid, 1,2-naphthoquinone-6-sulfonic acid, 
and 3-methyl-benzenesulfonic acid, as major biotransforma-
tion products for Orange I (80), Acid Orange 7 (82), Acid 
Orange 8 (83), Great Acid Red, and 4-[(4-hydroxy-
phenyl)azo]-benzenesulfonic acid (84) [202, 203, 204]. The 
degradation of Mordant Violet 5 (85) by Pleurotus ostreatus 

gave benzenesulfonic acid, 4-hydroxybenzensulfonate, and 
1,2-naphthoquinone [205, 206]; Disperse Orange 3 (86), 
Disperse Orange 1 (87), and Disperse Red 1 (88) were de-
graded to nitrobenzene, 4-nitrophenol and 4-nitroaniline 
[207, 208]. Furthermore, 1-methoxy-4-nitrobenzene, 1,2-
dimethoxy-4-nitrobenzene, and 2-methoxy-4-nitrophenol 

were found to be produced from 4-nitrophenol [218]. 

Decolourizing by non white-rot fungal species such as 
Aspergillus flavus, A. niger [209, 210], Helminthosporium 
sp, Mucor sp, Penicillium sp., Trichoderma viride, Myrothe-
cium sp. IMER1 [211], and Fusarium sp. isolated from tex-
tile effluent, was investigated for Remazol Yellow, Remazol 
Orange [212], Remazol Brilliant Blue R (RBBR) (73), Neu-
tral Brilliant Blue GL, and Acid Blue B (89), obtaining de-
colourization rates ~100% [213, 214, 215]. Also, Trichophy-
ton rubrum LSK-27 was able to decolourize 83% of Rema-
zol Tiefschwarz, 86% of Remazol Blue RR (90) and 80% of 

Supranol Turquoise GGL in liquid cultures [216].  

The mushroom fungi Lentinus conatus, Ischnoderma res-
inosum, and Ganoderma lucidum KMK2 were studied for 
this purpose [217]. The results showed that I. resinosum was 
able to decolourize all textile dyes tested (Reactive Black 5 
(91), Reactive Blue 19 (73), Reactive Red 22 (92), and Reac-
tive Yellow 15 (93)) [218] and G. lucidum decolorized an-
thraquinone dye Remazol Brilliant Blue R (RBBR) (73) and 
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diazo dye Remazol Black-5 (RB-5) (91) with biodegradation 
levels up to 90% [219]. Furthermore, Coprinellus xan-
thothrix, a new fungal strain isolated from a polyphenol pol-
luted soil in Greece, was tested for its ability to degrade a 
polyaromatic dye Poly R-478 (81). The fungus showed 
biosorption and biotransformation as removal mechanisms 

[220]. 

Dyehouse effluent treatment has become inevitable be-
cause of the presence of dyes which originate from harmful 
chemicals. Galactomyces geotrichum and Trametes sp. iso-
lated from contaminated soil were employed to degrade 
these dyes, finding a new strain with the high rate of 87.21% 
color reduction [221, 222]. In addition, Trametes versicolor 
decolourized the mono-azo-substituted naphthalenic dye 

Amaranth (79) [223, 224].   

Lignin and Cellulose Degradation 

Cellulose is the main polymeric component of the plant 

cell wall, the most abundant polysaccharide on Earth, and an 
important renewable resource. Basidiomycetous fungi are 

among its most potent degraders because many species grow 
on dead wood or litter which are rich in cellulose. For the 

degradation of cellulose, basidiomycetes utilize a set of hy-

drolytic enzymes typically composed of endoglucanase, cel-
lobiohydrolase and -glycosidase [225, 226, 227]. For in-

stance, Pleurotus ostreatus produces the cellulolytic and 

hemicellulolytic enzymes endo-1,4- -glucanase, exo-1,4- -
glucanase, 1,4- -glucosidase, endo-1,4- -xylanase, 1,4- -

xylosidase, endo-1,4- -mannanase and 1,4- -mannosidase 

and ligninolytic enzymes Mn-peroxidase and laccase during 
growth on wheat straw [228].  

Lignin is a complex chemical compound most commonly 

derived from wood, and an integral part of the secondary cell 

walls of plants and some algae. Several fungi have been 
studied for the biodegradation of lignin. Thus, agro-industrial 

wastes containing lignocellulose can be upgraded by solid 

state fermentation [229] other than biopulping during which 
the selective conversion of lignin is required. Several fungi 

(e.g. Pleurotus sp., Schyzophyllum sp., Tremetes versicolor, 

Lentinus crinitus, Aspergillus fumigatus, Stemphylium ver-
ruculosum, Paecilolomices carneus, Ceriporiopsis subver-

mispora, and species of the genus Phlebia) were able to 

grow on different agro-industrial wastes, obtaining high 
biodelignification [230-237]. Moreover, fungi belonging to 

genus Aspergillus, Trichoderma, Phanerochaete and Co-

prinus are known to decompose paddy straw, corn straw, 
wheat straw and horticultural wastes, whereas Pleurotus sa-

jor-caju, P. platypus and P. citrinopileatus are known to 

colonize coir fibre, cotton stalks and sorghum stover. These 
fungi may be specific for each substrate and can be used as 

an effective tool for in situ degradation of lignin residues 

[238-243].  

Trametes versicolor contributed to improving the biode-
gradability of Norway spruce chips from the paper industry 
[244] and gave better results in the removal of poplar chips 
than the other fungi tested, Phanaerochaete chrysosporium 
and Pycnoporus sanguineus [245]. Thus, Elissetche et al. 
[246] studied the biodegradation of Drimys winteri and Not-
hofagus dombeyi, two native Chilean wood species, by Gan-
oderma australe, which is responsible for a unique field bio-
degradation process resulting in completely white-rotted logs 

known as "palo podrido" in southern Chile.  

Nyochenbeng et al. [247, 248] studied edible white rot 
fungi for selective plant biomass transformation and recy-
cling in a sustainable ecological advanced life support (ALS) 
needed for extraterrestrial expeditions, such as the mission to 
Mars. Pleurotus ostreatus (‘Grey Dove’), P. pulmonarius, P. 
eryngii, and four shiitake mushroom (Lentinula edodes) 

strains were used in the study on processed residues.  

Selective degradation of lignocellulose by bamboo white 
rot fungi was initially studied. Zhang et al. [249, 250] inves-
tigated the degradation of bamboo residues by Coriolus ver-
sicolor B1 and Trametes spp. B1, having apparent degrada-
tion selectivity for hemicellulose and lignin. Echinodontium 
taxodii 2538 and Trametes versicolor G20 were selected for 
the biological pretreatment of bamboo culms (Phyllostachys 
pubescens), increasing the sugar yield of bamboo culms 
[251]. White-rot fungi were also capable of degrading the 
effluent from Eucalyptus chemithermomechanical pulp 
(CTMP) [252] and david poplar wood living on broad-leaf 
trees. For instance, Funalia gallica, Lenzites tricolor, 
Phellinus igniarius, Polyporellus brumalis, Pseudotrametes 
gibbosa, and Pycnoporus sanguineus reduced phenolic acids 

in primitive david poplar wood and wood degradation [253].  

A strain of non white-rot fungi isolated from soil, Peni-
cillium simplicissimum, showed different ligninolytic ability 
from white-rot fungi. The lignin degradation by P. simplicis-
simum happened mainly during the primary metabolism and 
it was greatly influenced by the pH of the media, the concen-
tration of Cu

2+
 and Mn

2+
 [254]. P. simplicissimum was also 

tested with Aspergillus niger to test its capacity to decom-
pose hydroxybenzene and nonhydroxybenzene lignin com-
pounds of low molecular weight. Five different enzymes, 
lignin peroxidase, manganese peroxidase, laccase, cellulase 
and hemicellulase, were believed to be the most important 
catalysts in biodegrading process, and they always worked 

synergistically [255].  

Lastly, biodegradation by brown-rot fungi is quantita-
tively one of the most important fates of lignocellulose in 
nature. Gloeophyllum trabeum and Fomitopsis sp. IMER2 
were investigated for the biodegradation of different samples 
of lignin. G. trabeum resulted in a marked, non-selective 
depletion of all intermonomer side-chain linkages in the lig-
nin [256], and Fomitopsis sp. IMER2 was used for the treat-
ment of black liquor by biological acidification for the pre-
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cipitation of alkali lignin [257]. Furthermore, Piptoporus 
betulinus, a common wood-rotting fungus parasitic for birch 
(Betula species), was able to degrade the lignin of birch 

wood [258, 259].  

Polymers 

The increasing consumption of plastics has generated en-
vironmental problems because it takes more than a hundred 
years for a discarded polymer to degrade. The ideal plastic 
should present desirable industrial properties and be degrad-
able within a satisfactory time period [260]. 

The biodegradation ability of fungi is being investigated 
for polymers and plastics [261]. One example is the biodeg-
radation of plasticized polyvinyl chloride (pPVC) by Penicil-
lium janthinellum and Doratomyces spp. in grassland soil. 
The incorporation of biocides into pPVC was also studied 
affecting both fungal growth and the richness of species iso-
lated [262]. Moreover, Gloeophyllum trabeum were used to 
degrade poly(vinylalcohol)(PVA) films [263, 264]. Alariqi et 
al. [265] investigated the effect of sterilization on the bio-
degradation by Aspergillus niger of polyolefins which are 
widely used as part of biomedical devices and food packag-

ing after sterilization.  

Attending to the biodegradability of several polymers, 
the degradation of a blend of the copolymer poly(hydroxy-
butyrate-hydroxyvalerate), PHB-HV, which is a natural, bio-
degradable and biocompatible thermoplastic, was studied by 
a mixed culture of Phanerochaete chrysosporium and Ta-
laromyces wortmannii. The results showed that the biodeg-
radation of the blend was a function of time, with the ap-
pearance of terminal carboxylic groups [266]. In addition, 
carboxymethylchitosan-g-medium chain length polyhy-
droxyalkanoates polyhydroxyalkanoates (mcl-PHA) were 
biodegraded by Aspergillus fumigatus 202 with a 93% 

weight loss of the graft [267].   

Some studies were done to elucidate the microbial com-
munities responsible for the decomposition of poly-( -
caprolactone) (PCL), poly-(butylene succinate) (PBS), poly-
(butylene succinate and adipate) (PBSA), and poly-lactide 
(PLA) [268, 269, 270]. Fungi isolated from various soil envi-
ronments were investigated to biodegrade poly(butylene suc-
cinate) (PBSu), such as KTF003, KTF004, and NKCM1001 
strains, which have also been reported to be P(3HB)-
degraders. Mesophilic strain NKCM1003 exhibited the high-
est poly(alkylene succinate) (PESu) hydrolytic activity 
among all the isolates [271, 272]. Biodegradation of poly-
ethylene (DPE) was reported by white-rot fungi Phanero-
chaete chrysosporiumwas, Talaromyces wortmannii, and 
Penicillium frequentans showing high degradation [273, 274, 

275].  

Cosgrove et al. [276] studied the biodegradation of poly-
ester-polyurethane (PU) showing that Geomyces pannorum 
and a Phoma species were the dominant species in soil fun-
gal communities involved in the biodegradation of PU. An-
other recalcitrant synthetic polymer polyamide-6, generally 
known as nylon-6 was tested for biodegradation by fungi: 
five Fusarium spp., two Phanerochaete chrysosporium 
strains, four Aspergillus spp. and Penicillium spp., three 
Cladosporium spp. and Ulocladium spp., two Trichoderma 
spp., and one strain each of Gliocladium roseum, Pithomyces 
chartarum, Trichotecium roseum, and Mucor hiemalis. The 

study showed that only white rot fungi are able to break 
down nylon-6 [277]. On the other hand, the biodegradation 
of the aliphatic polyester resin Bionolle was carried out by 
the filamentous fungi Aspergillus niger and Penicillium fu-
niculosum, and Chlorella sp., Lemna minor, Brassica rapa, 
Daphnia magna and Allium cepa. The products of hydrolytic 
degradation did not negatively affect the organisms living in 
the environment [278]. The aerobic biological degradation 
by fungi of the synthetic aliphatic-aromatic co-polyester 
Ecoflex (BASF) was also studied. Weight loss was not as 
obvious as visual degradation and suggested broader types of 
microbial attack [279].   

Other Industries 

Fungi are capable of mineralizing a wide variety of toxic 
xenobiotics due to the non-specific nature of their extracellu-
lar enzymes. For instance, anaerobically digested molasses 
spent wash (DMSW) is a dark-brown-coloured recalcitrant 
effluent which has a high chemical oxygen demand (COD) 
and high pollution potential. Fungi such as Aspergillus, 
Rhizopus and Fusarium were able to effectively degrade 

DMSW [280]. 

Wastes from the agricultural activities were used for bio-
degradation. The biodegradation of untreated fertilizer indus-
try effluent using native fungus Aspergillus niger and non-
native, white-rot fungus Phanerochaete chrysosporium was 

studied [281].  

Kalyankar et al. [282] investigated the degradation of In-
dia dyes by fungi from the poultry industry in Maharashtra 
State. Of the fungi isolated from the soil of poultry farms, 
Chrysosporium tropicum, C. keratinophilum, Microsporium 
cannis, Trichophyton verrucosum, and T. equinum were 
found to be the most dominant. Aspergillus sp. was the most 
efficient microorganism in removing ammonia from the 

natural sources-poultry farm and agricultural fields [283].  

Penicillium sp. P6 was isolated from coal mine soil at the 
Qiantong colliery, Liaoning Province, North-west China, as 
was able to degrade Chinese lignite effectively [284]. Deu-
teromycete Neosartorya fischeri, degraded coal in the Wit-

bank coal mining area of South Africa [285]. 

Biodegradation of sugar industry wastewater using the 
fungi Aspergillus niger and Phanerochaete chrysosporium is 
an effective pollution abatement solution for wastewater 
treatment. The fungus can degrade 98.92 % of COD and 
99.86 % of biochemical oxygen demand (BOD5) in 168 h of 
incubation at optimum biological process conditions. The 
color removal of the effluents is 99.34 % at optimum incuba-

tion time with optimum bioprocess parameters [286, 287].  

One of the foremost environmental concerns in develop-
ing countries today is Solid Waste Management. In India, 
degradation of fruit waste was investigated by aerobic com-
posting [288]. Garbage biodegradation was also studied by 
white-rot fungi [289]. Sludge degradation and biofloccula-
tion were studied using pellet-forming filamentous fungi 

isolated from municipal wastewater sludge [290].   

Tannery wastewater is a powerful pollutant especially 
due to its high chemical oxygen demand (COD). Trametes 
versicolor was examined to remove color from secondary 
treated tannery wastewater giving a maximum color removal 
efficiency of 64% [291]. Fusarium culmorum and Muscodor 
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albus were used to treat human and/or animal waste products 

with a good results [292].   

Lastly, the accumulation of munitions wastes in the envi-

ronment has damaged many ecosystems because of their 

explosive properties and these compounds are biological 

poisons. Biodegradation by fungi is being investigated. For 

instance, the biodegradation of diazodinitrophenol (DDNP) 

wastewater was carried out by a white rot fungus cultivated 

and domesticated at a laboratory in situ. The removal of ani-

line compounds and nitro compounds were over 99.9%, 

reaching the National First-degree Wastewater Discharge 

Standard [293].   

Undersea deposition of unexploded ordnance (UXO) 

constitutes a potential source of contamination of marine 

environments by hexahydro-1,3,5-trinitro-1,3,5-triazine 

(RDX) (94) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetra-

zozine (HMX) (95). Using sediment from a coastal UXO 

field, Oahu Island, Hawaii, four novel aerobic RDX-

degrading fungi HAW-OCF1, HAW-OCF2, HAW-OCF3 

and HAW-OCF5 were isolated and tentatively identified as 

members of Rhodotorula, Bullera, Acremonium and Penicil-

lium, respectively. The four isolates mineralized 15-34% of 

RDX (94) [294]. Royal Demolition Explosive (RDX) (94) 

was also degraded by white-rot fungi, showing that the re-

moval efficiency in wastewater could reach 87% under op-

timum conditions [295, 296].  

Degradation of the emerging contaminant CL-20 (2,4,6, 

8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) (96), 

was reported using Phanerochaete chrysosporium. Another 

ligninolytic fungus, Irpex lacteus, was also able to degrade 

CL-20 (96), but as for P. chrysosporium, no early intermedi-

ates were observed. The intermediate was thus tentatively 

identified as a doubly denitrated CL-20 (96) product [297].  

CONCLUSIONS  

Biocatalysis has been demonstrated to be a powerful tool 
for the pollutants degradation, which is a priority for scien-

tists in the current industrialized world.  

Chemical methods have several disadvantages in the deg-
radation of pollutants because they usually use contaminant 
catalysts and their use in large-scale contaminated field sites 
is difficult. On the other hand, biocatalytic reactions can be 
carried out at ambient temperature and atmospheric pressure, 
under safety, health, environmental, and economical condi-
tions. In this regard, fungi have been shown to possess a va-
riety of catabolic activities that can be harnessed to transform 

contaminants in less toxic compounds for the environment. 

Most of the research on fungal bioremediation has been 
conducted on laboratory scale and conditions, so further 
work is required to study these capacities taking into account 
the natural variables and their applicability in large-scale 

contaminated fields.  

In addition, the screening of new fungal strains with in-
teresting enzymatic activities is necessary for the degradation 
of the new pollutants from the increasing industry contami-
nation. This microorganism screening, in combination with 
current biotechnologies such as genetic engineering, will 
pave the way to the future use of fungal whole cells and en-
zymes for bioremediation.  
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