2,985 research outputs found

    Climate Risk Analysis on the Food Security in Saguday, Quirino Province

    Get PDF
    Saguday is a 5th-class municipality of Quirino Province. The nine barangays of Saguday namely – La Paz, Cardenas, Salvacion, Santo Tomas, Rizal, Tres Reyes, Dibul, Cardenas and Gamis – are all vulnerable to climate change and calamities, not only because of the scarce resources of the municipality, but also due to the geographical and climatological condition of the area. Rainfall rates are projected to increase due to climate change and there will also be some likely increase in mean maximum tropical cyclone wind speed due to the projected 21st century warming (Knutson et al., 2010). Its location in Quirino Province places Saguday within the biggest watershed area in the region. Both observational data and modelling projections show that with climate change, wet regions will generally (but not universally) become wetter. Crop production in Saguday may also be affected biophysically by meteorological variables including rising temperatures, changing precipitation regimes, and increased atmospheric carbon dioxide levels. As socio-economic factors influence responses to changes in crop productivity with price changes and shifts in comparative advantage, a 5th class municipality with scarce resources can be very vulnerable to the effects of climate change. This present study identifi es the climatological problems and difficulties confronting the municipality

    Molecular Template for a Voltage Sensor in a Novel K+ Channel. II. Conservation of a Eukaryotic Sensor Fold in a Prokaryotic K+ Channel

    Get PDF
    KvLm, a novel bacterial depolarization-activated K+ (Kv) channel isolated from the genome of Listeria monocytogenes, contains a voltage sensor module whose sequence deviates considerably from the consensus sequence of a Kv channel sensor in that only three out of eight conserved charged positions are present. Surprisingly, KvLm exhibits the steep dependence of the open channel probability on membrane potential that is characteristic of eukaryotic Kv channels whose sensor sequence approximates the consensus. Here we asked if the KvLm sensor shared a similar fold to that of Shaker, the archetypal eukaryotic Kv channel, by examining if interactions between conserved residues in Shaker known to mediate sensor biogenesis and function were conserved in KvLm. To this end, each of the five non-conserved residues in the KvLm sensor were mutated to their Shaker-like charged residues, and the impact of these mutations on the voltage dependence of activation was assayed by current recordings from excised membrane patches of Escherichia coli spheroplasts expressing the KvLm mutants. Conservation of pairwise interactions was investigated by comparison of the effect of single mutations to the impact of double mutations presumed to restore wild-type fold and voltage sensitivity. We observed significant functional coupling between sites known to interact in Shaker Kv channels, supporting the notion that the KvLm sensor largely retains the fold of its eukaryotic homologue

    Molecular Template for a Voltage Sensor in a Novel K+ Channel. I. Identification and Functional Characterization of KvLm, a Voltage-gated K+ Channel from Listeria monocytogenes

    Get PDF
    The fundamental principles underlying voltage sensing, a hallmark feature of electrically excitable cells, are still enigmatic and the subject of intense scrutiny and controversy. Here we show that a novel prokaryotic voltage-gated K+ (Kv) channel from Listeria monocytogenes (KvLm) embodies a rudimentary, yet robust, sensor sufficient to endow it with voltage-dependent features comparable to those of eukaryotic Kv channels. The most conspicuous feature of the KvLm sequence is the nature of the sensor components: the motif is recognizable; it appears, however, to contain only three out of eight charged residues known to be conserved in eukaryotic Kv channels and accepted to be deterministic for folding and sensing. Despite the atypical sensor sequence, flux assays of KvLm reconstituted in liposomes disclosed a channel pore that is highly selective for K+ and is blocked by conventional Kv channel blockers. Single-channel currents recorded in symmetric K+ solutions from patches of enlarged Escherichia coli (spheroplasts) expressing KvLm showed that channel open probability sharply increases with depolarization, a hallmark feature of Kv channels. The identification of a voltage sensor module in KvLm with a voltage dependence comparable to that of other eukaryotic Kv channels yet encoded by a sequence that departs significantly from the consensus sequence of a eukaryotic voltage sensor establishes a molecular blueprint of a minimal sequence for a voltage sensor

    Neonatal Near Miss: A Systematic Review

    Get PDF
    Background: The concept of neonatal near miss has been proposed as a tool for assessment of quality of care in neonates who suffered any life-threatening condition. However, there are no internationally agreed concepts or criteria for defining or identifying neonatal near miss. The purpose of this study was to perform a systematic review of studies and markers that are able to identify neonatal near miss cases and predict neonatal mortality. Methods: Electronic searches were performed in the Medline, Embase and Scielo databases, with no time or language restriction, until December 2014. The term "neonatal near miss" was used alone or in combination with terms related to neonatal morbidity/mortality and neonatal severity scores. Study selection criteria involved three steps: title, abstract and full text of the articles. Two researchers performed study selection and data extraction independently. Heterogeneity of study results did not permit the performance of meta-analysis. Results: Following the inclusion and exclusion criteria adopted, only four articles were selected. Preterm and perinatal asphyxia were used as near miss markers in all studies. Health indicators on neonatal morbidity and mortality were extracted or estimated. The neonatal near miss rate was 2.6 to 8 times higher than the neonatal mortality rate. Conclusions: Pragmatic and management criteria are used to help develop the neonatal near miss concept. The most severe cases are identified and mortality is predicted with these criteria. Furthermore, the near miss concept can be used as a tool for evaluating neonatal care. It is the first step in building management strategies to reduce mortality and long-term sequelae.1

    Molecular Template for a Voltage Sensor in a Novel K+ Channel. III. Functional Reconstitution of a Sensorless Pore Module from a Prokaryotic Kv Channel

    Get PDF
    KvLm is a prokaryotic voltage-gated K+ (Kv) channel from Listeria monocytogenes. The sequence of the voltage-sensing module (transmembrane segments S1-S4) of KvLm is atypical in that it contains only three of the eight conserved charged residues known to be deterministic for voltage sensing in eukaryotic Kv's. In contrast, the pore module (PM), including the S4-S5 linker and cytoplasmic tail (linker-S5-P-S6-C-terminus) of KvLm, is highly conserved. Here, the full-length (FL)-KvLm and the KvLm-PM only proteins were expressed, purified, and reconstituted into giant liposomes. The properties of the reconstituted FL-KvLm mirror well the characteristics of the heterologously expressed channel in Escherichia coli spheroplasts: a right-shifted voltage of activation, micromolar tetrabutylammonium-blocking affinity, and a single-channel conductance comparable to that of eukaryotic Kv's. Conversely, ionic currents through the PM recapitulate both the conductance and blocking properties of the FL-KvLm, yet the KvLm-PM exhibits only rudimentary voltage dependence. Given that the KvLm-PM displays many of the conduction properties of FL-KvLm and of other eukaryotic Kv's, including strict ion selectivity, we conclude that self-assembly of the PM subunits in lipid bilayers, in the absence of the voltage-sensing module, generates a conductive oligomer akin to that of the native KvLm, and that the structural independence of voltage sensing and PMs observed in eukaryotic Kv channels was initially implemented by nature in the design of prokaryotic Kv channels. Collectively, the results indicate that this robust functional module will prove valuable as a molecular template for coupling new sensors and to elucidate PM residue–specific contributions to Kv conduction properties

    Ants Sleep, Plants do not: The Variation in Species’ Activity Influences the Topology of Interaction Networks

    Get PDF
    The emergence of graph theory allowed using the complex network approach to aggregate detailed information about interactions between species. Although the use of the complex network approach has improved the understanding about community structuring, few aspects such as the temporal variation in the species’ activity pattern in the networks’ topology were explored so far. The current study used the ecological network approach to investigate ants interacting in the extrafloral nectary (EFN) of plants in order to test the hypothesis that the temporal variation in the foraging behavior of these animals affects the networks’ topology. In order to assess the temporal effect on the interaction networks, 24-hour collections divided in two 12-hour shifts (day and night) were performed in 20 plots, thus totaling 288 collection hours over 6 months. The ant-plant interaction networks presented similarity among the topological metrics assessed throughout the day. Different ant species presented distinct foraging times. Thus, two modules referring to the day and night shifts emerged from the network and presented specific species at each foraging shift. On the other hand, the plants kept on providing the resource (active EFNs) throughout the day. The results found in the current study have shown that ecological networks keep their structures constant; however, the ecological processes ruling these networks can better respond to the effects caused, for example, by the temporal variation in species’ activity. Therefore, it is worth always taking into consideration the importance of ecological processes at the time to analyze interactions in the nature

    Numerical simulation of two-phase fluid flow

    Get PDF
    We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.Fil: Carcione, Jose M.. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Picotti, Stefano. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados UnidosFil: Qadrouh, Ayman. King Abdulaziz City For Science And Technology; Arabia SauditaFil: Almalki, Hashim S.. King Abdulaziz City For Science And Technology; Arabia Saudit

    Performance and emission of pollutants of an agricultural engine with two-power take-off settings

    Get PDF
    Farming operations are usually performed implements driven by a power take-off (PTO) from tractors. Some manufacturers offer PTO settings named as economic (540E). Such configuration drives implements at lower tractor’s engine rotation, thus providing lower fuel consumption. An engine performance using standard (540) or 540E settings are different and poorly studied. The amounts of pollutants emitted by engines vary mainly with the applied load and rotation. The aim of this study was to compare the performance and exhaust emissions of a farming tractor engine under different PTO loads, using both standard (540) and 540E settings. Specific fuel consumption using 540E was an average 14.7% less than the standard setting. However, 540E promoted increasing levels of gas opacity, CO, CO2, NOx, and HC for the highest PTO power demands.Postprint (published version

    Neonatal Near Miss: A Systematic Review.

    Get PDF
    The concept of neonatal near miss has been proposed as a tool for assessment of quality of care in neonates who suffered any life-threatening condition. However, there are no internationally agreed concepts or criteria for defining or identifying neonatal near miss. The purpose of this study was to perform a systematic review of studies and markers that are able to identify neonatal near miss cases and predict neonatal mortality. Electronic searches were performed in the Medline, Embase and Scielo databases, with no time or language restriction, until December 2014. The term neonatal near miss was used alone or in combination with terms related to neonatal morbidity/mortality and neonatal severity scores. Study selection criteria involved three steps: title, abstract and full text of the articles. Two researchers performed study selection and data extraction independently. Heterogeneity of study results did not permit the performance of meta-analysis. Following the inclusion and exclusion criteria adopted, only four articles were selected. Preterm and perinatal asphyxia were used as near miss markers in all studies. Health indicators on neonatal morbidity and mortality were extracted or estimated. The neonatal near miss rate was 2.6 to 8 times higher than the neonatal mortality rate. Pragmatic and management criteria are used to help develop the neonatal near miss concept. The most severe cases are identified and mortality is predicted with these criteria. Furthermore, the near miss concept can be used as a tool for evaluating neonatal care. It is the first step in building management strategies to reduce mortality and long-term sequelae.1532

    Lecitase ultra: A phospholipase with great potential in biocatalysis

    Get PDF
    Lecitase Ultra is a chimera produced by the fusion of the genes of the lipase from Thermomyces lanuginosus and the phospholipase A1 from Fusarium oxysporum. The enzyme was first designed for the enzymatic degumming of oils, as that problem was not fully resolved before. It is commercialized only as an enzyme solution by Novo Nordisk A/S. This review shows the main uses of this promising enzyme. Starting from the original degumming use, the enzyme has found applications in many other food modification applications, like production of structured phospholipids (e.g., derivatives of phosphatidylcholine), tuning the properties of flour, etc. Moreover, the enzyme has been used in fine chemistry (resolution of racemic mixtures), in the production of aromas and fragrances, polymers modification, etc. Some papers show the use of the enzyme in biodiesel production. Moreover, we present the different technologies applied to obtain a suitable immobilized biocatalyst, remarking the immobilization via interfacial activation and how heterofunctional acyl supports may solve some of the limitations. Immobilized enzyme physical and chemical modifications have also been presented. Finally, Lecitase Ultra has been one of the model enzymes in a new strategy to coimmobilize lipases and other less stable enzymes.We gratefully recognize the financial support from MINECO from Spanish Government (project number CTQ2017-86170-R), Colciencias, Ministerio de Educación Nacional, Ministerio de Industria, Comercio y Turismo e ICETEX, Convocatoria Ecosistema Científico – Colombia Científica. Fondo Francisco José de Caldas, Contrato RC-FP44842-212-2018, Colciencias (Colombia, project number FP 44842-076-2016), Generalitat Valenciana (PROMETEO/2018/076), FAPERGS (project number 17/2551-0000939-8), FUNCAP (project number BP3-0139-00005.01.00/18) and CONACYT (Mexico, project number CB-2016-01, 286992)
    corecore