21 research outputs found

    Neutrino-driven electrostatic instabilities in a magnetized plasma

    Get PDF
    The destabilizing role of neutrino beams on the Trivelpiece-Gould modes is considered, assuming electrostatic perturbations in a magnetized plasma composed by electrons in a neutralizing ionic background, coupled to a neutrino species by means of an effective neutrino force arising from the electro-weak interaction. The magnetic field is found to significantly improve the linear instability growth rate, as calculated for Supernova type II environments. On the formal level, for wave vector parallel or perpendicular to the magnetic field the instability growth rate is found from the unmagnetized case replacing the plasma frequency by the appropriated Trivelpiece-Gould frequency. The growth rate associated with oblique propagation is also obtained

    Neutrino magnetohydrodynamics

    Full text link
    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail

    Coupling between ion-acoustic waves and neutrino oscillations

    Get PDF
    The work investigates the coupling between ion-acoustic waves and neutrino flavor oscillations in a nonrelativistic electron-ion plasma under the influence of a mixed neutrino beam. Neutrino oscillations are mediated by the flavor polarization vector dynamics in a material medium. The linear dispersion relation around homogeneous static equilibria is developed. When resonant with the ion-acoustic mode, the neutrino flavor oscillations can transfer energy to the plasma exciting a new fast unstable mode in extreme astrophysical scenarios. The growth rate and the unstable wavelengths are determined in typical type II supernova parameters. The predictions can be useful for a new indirect probe on neutrino oscillations in nature

    Temporal Klein Model for Particle-Pair Creation

    No full text
    This work considers the creation of electron-positron pairs from intense electric fields in vacuum, for arbitrary temporal field variations. These processes can be useful to study quantum vacuum effects with ultra-intense lasers. We use the quantized Dirac field to explore the temporal Klein model. This model is based on a vector potential discontinuity in time, in contrast with the traditional model based on a scalar potential discontinuity in space. We also extend the model by introducing a finite time-scale for potential variations. This allows us to study the transition from a singular electric field spike, with infinitesimal duration, to the opposite case of a static field where the Schwinger formula would apply. The present results are intrinsically non-perturbative. Explicit expressions for pair-creation as a function of the potential time-scales are derived. This work explores the spacetime symmetry associated with pair creation in vacuum: the space symmetry breaking of the old Klein paradox model, in contrast with the time symmetry breaking of the temporal Klein model

    Twisted Waves near a Plasma Cutoff

    No full text
    This work considers twisted wave propagation in inhomogeneous and unmagnetised plasma, and discusses the wave properties in the cutoff region. The qualitative differences between twisted waves described by a single Laguerre–Gauss (LG) mode, and light springs resulting from the superposition of two or more LG modes with different frequency and helicity are studied. The peculiar properties displayed by these waves in the nonuniform plasma are discussed. The pulse envelope of a light-spring shows a contraction at reflection, which resembles that of a compressed mechanical spring. The case of normal incidence is examined, and nonlinear ponderomotive effects are discussed, using theory and simulations

    Wave-Kinetic Approach to Collective Atomic Emission

    No full text
    We study the collective scattering of radiation by a large ensemble of Na≫1 atoms, in the presence of a pump field. We use the wave-kinetic approach where the center-of-mass position of the moving atoms is described by a microscopic discrete distribution, or alternatively, by a Wigner distribution. This approach can include thermal effects and quantum recoil in a natural way, and even consider atomic ensembles out of equilibrium. We assume two-level atoms with atomic transition frequency ωa very different from the frequency ω0 of the pump field. We consider both the quasi-classical and quantum descriptions of the center-of-mass motion. In both cases, we establish the unstable regimes where coherent emission of radiation can take place

    Twisted Waves near a Plasma Cutoff

    No full text
    This work considers twisted wave propagation in inhomogeneous and unmagnetised plasma, and discusses the wave properties in the cutoff region. The qualitative differences between twisted waves described by a single Laguerre–Gauss (LG) mode, and light springs resulting from the superposition of two or more LG modes with different frequency and helicity are studied. The peculiar properties displayed by these waves in the nonuniform plasma are discussed. The pulse envelope of a light-spring shows a contraction at reflection, which resembles that of a compressed mechanical spring. The case of normal incidence is examined, and nonlinear ponderomotive effects are discussed, using theory and simulations
    corecore