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The destabilizing role of neutrino beams on the Trivelpiece-Gould modes is considered, assuming
electrostatic perturbations in a magnetized plasma composed by electrons in a neutralizing ionic
background, coupled to a neutrino species by means of an effective neutrino force arising from the
electroweak interaction. The magnetic field is found to significantly improve the linear instability growth
rate, as calculated for supernova type II environments. On the formal level, for wave vectors parallel or
perpendicular to the magnetic field, the instability growth rate is found from the unmagnetized case
replacing the plasma frequency by the appropriated Trivelpiece-Gould frequency. The growth rate
associated with oblique propagation is also obtained.
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I. INTRODUCTION

There is a continuous interest on the neutrino-plasma
interaction in magnetized media. For instance, it has been
suggested [1–4] that neutrino bursts could transfer energy-
momentum to the magnetized plasma around the core of the
supernovae, triggering the stalled shock expansion therein.
Strong wakefields driven by neutrino bursts in magnetized
electron-positron plasma have been reported [5]. The
Mikheilev-Smirnov-Wolfenstein effect of neutrino flavor
conversion is significantly influenced by strong magnetic
fields, with possible implications on supernova evolution
and other magnetized media [6]. Spin waves destabilized
by neutrino beams in magnetized plasma [7], the linear
spectrum in magnetized electron-positron coupled to
neutrino-antineutrino species in the early universe and
neutrino cosmology [8], the neutrino effective charge in
magnetized pair plasma [9], neutrino emission via collective
processes in magnetized plasma [10], nonlinear generation
of waves by neutrinos in magnetized plasmas [11,12], the
neutrino destabilizing effects on magnetosonic waves
described by neutrino magnetohydrodynamics model [13],
and the coupling between neutrino flavor oscillations and
ion-acoustic waves [14] have been reported. In astrophysical
plasmas, in general, intense neutrino beams are ubiquitous,
as in the lepton era of the early universe [15].
Trivelpiece-Gould modes [16] are one of the basic waves

in magnetized plasma, characterized by electrostatic excita-
tions only (no magnetic field perturbations), for an electron
plasma in an homogeneous ionic background. Therefore, the
treatment of Trivelpiece-Gouldmodes allowing for neutrino-
plasma coupling has an intrinsic relevance, besides astro-
physical applications. The solution of the problem was not
performed yet and this is the goal of the work. Notice that

according to the original article [16], Trivelpiece-Gould
modes were deduced allowing for an arbitrary angle between
the external magnetic field and wave vector; see also, e.g.,
[17] (p. 107).
Following the usual approach to neutrino-plasma inter-

actions (see, e.g., [18] for a review), a macroscopic, fluid
modeling is adopted, in spite of the weakly collisional
character of the system. The reasons for this start from the
fact that the macroscopic equations are quasiexact con-
servation laws, irrespective of the microphysics. Moreover,
we put an emphasis on the collective aspects rather than on
interparticle phenomena such as collisions. This is justified,
since, e.g., it is known that the effective ponderomotive
force of neutrinos on the plasma far exceeds the contribu-
tion from single neutrino-electron scattering [19]. Besides,
for hydrodynamic, reactive instabilities, kinetic effects such
as electron and neutrino Landau damping are not relevant.
Therefore, a sufficiently long wavelength is necessary, as
should be verified in concrete cases. However, in later
stages when the reactive instability saturates, the kinetic
regime can become important and accessible only by means
of microscopic approaches. In addition, note that the use of
fluid equations for systems with small collisionality is also
traditional for classical plasmas, whenever justified accord-
ing to the above general lines. For instance, one can
consider the treatment of collisionless shocks by hydro-
dynamic equations [20]. Finally, the analytical and numeri-
cal treatment of kinetic theories is often too heavy.
The article is organized as follows. In Sec. II the basic

model equations are proposed. In Sec. III the general
dispersion relation is obtained. Section IV treats two
notable subcases: wave propagation perpendicular and
parallel to the external magnetic field. The destabilization
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and growth rate of the corresponding Trivelpiece-Gould
modes are then derived and calculated in astrophysical
scenarios. Section V contains the oblique propagation case.
Section VI has our conclusions. The Appendix is reserved
to the complete expressions of the neutrino number density
and velocity field perturbations.

II. PHYSICAL MODEL

The system is described by a hydrodynamical model for
electrons and neutrinos, in a homogeneous ionic back-
ground. Denoting ne;ν and ue;ν as, respectively, the electron
(e) and neutrino (ν) fluid densities (in the laboratory frame)
and velocity fields, one will have the continuity equations

∂ne
∂t þ∇ · ðneueÞ ¼ 0;

∂nν
∂t þ∇ · ðnνuνÞ ¼ 0; ð1Þ

together with the (nonrelativistic) electron force equation

me

� ∂
∂tþ ue · ∇

�
ue ¼ −

∇p
ne

− eð−∇ϕþ ue ×B0Þ

þ
ffiffiffi
2

p
GFðEν þ ue ×BνÞ; ð2Þ

and the neutrino force equation

∂pν

∂t þ uν ·∇pν

¼
ffiffiffi
2

p
GF

�
−∇ne − 1

c2
∂
∂t ðneueÞ þ

uν

c2
× ½∇ × ðneueÞ�

�
;

ð3Þ

where pν ¼ Eνuν=c2 is the neutrino relativistic momentum
for a neutrino beam energy Eν. In Eq. (2),me is the electron
mass, −e is the electron charge, p ¼ pðneÞ is the electron
fluid pressure, GF is Fermi’s coupling constant, and Eν, Bν

are effective neutrino electric and magnetic fields given by

Eν ¼ −∇nν −
1

c2
∂
∂t ðnνuνÞ; Bν ¼

1

c2
∇ × ðnνuνÞ; ð4Þ

where c is the speed of light. In this work we consider
electrostatic excitations with scalar potential ϕ described by
Poisson’s equation with a neutralizing background n0,

∇2ϕ ¼ e
ε0
ðne − n0Þ; ð5Þ

where ε0 the vacuum permittivity constant, in the presence
of a homogeneous magnetic field B0 is apparent in the
magnetic force in Eq. (2). However, there are no magnetic
field perturbations. Without neutrinos, this setting gives rise
to the Trivelpiece-Gould modes [16]. Our goal is to
investigate the role of a neutrino beam free energy in this
context. The present model was introduced, without an

ambient magnetic field, in [21]. For simplicity, neutrino
flavor oscillations are not taken into account.

III. LINEAR WAVES

We have the homogeneous static equilibrium

ne ¼ n0; ue ¼ 0; nν ¼ nν0;

uν ¼ uν0; ϕ ¼ 0; ð6Þ

where nν0 and uν0 are, respectively, the equilibrium
neutrino number density and velocity field, assumed to
be constant. Linearizing the model equations in terms of
plane wave perturbations ∼ exp½iðk · r − ωtÞ�, denoting
fluctuations with a delta as for instance in ne ¼ n0 þ δne
exp½iðk · r − ωtÞ�, one readily finds

ωδne ¼ n0k · δue; ðω − k · uν0Þδnν ¼ nν0k · δuν; ð7Þ

meωδue¼
1

n0

�
dp
dne

�
0

kδne−eðkδϕþ iδue×B0Þ

þ
ffiffiffi
2

p
GF

��
k−

ω

c2
uν0

�
δnν−

ωnν0
c2

δuν

�
; ð8Þ

ðω − k · uν0Þδpν

¼
ffiffiffi
2

p
GF

�
kδne −

n0ω
c2

δue −
n0
c2

uν0 × ðk × δueÞ
�
; ð9Þ

− k2δϕ ¼ e
ε0

δne: ð10Þ

Notice that in Eq. (9), δue appears already in a term
proportional to GF. Since there is no need to include very
small higher order corrections, in Eq. (9) we need only the
classical δue ¼ δuC

e obtained setting GF ¼ 0 in Eq. (8),
namely,

δuC
e ¼ δne

n0

V2

ωðω2 − ω2
cÞ
ðω2k − ðk · ωcÞωc þ iωωc × kÞ;

ð11Þ

where

V2 ¼ v2T þ ω2
p

k2
; v2T ¼ 1

me

�
dp
dne

�
0

;

ω2
p ¼ n0e2

meε0
; ωc ¼

eB0

me
: ð12Þ

The trick is to substitute δue → δuC
e in Eq. (9) to obtain δpν

and then δuν correct up to OðGFÞ. Using the neutrino
continuity equation, this will give δnν also up to OðGFÞ.
The recursive procedure allows us to rewrite Eq. (8) as
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ωδue þ iδue × ωc ¼
V2kδne

n0
þ ωδvν; ð13Þ

where δvν contains all neutrino effects,

δvν ≡
ffiffiffi
2

p
GF

meω

��
k −

ω

c2
uν0

�
δnν −

nν0ω
c2

δuν

�
: ð14Þ

By construction, δvν will be of order OðG2
FÞ, since δnν and

δuν are OðGFÞ by the procedure, whose ultimate expres-
sions are shown in the Appendix. The same formulas show
δnν and δuν as directly proportional to δne. The solution to
Eq. (13),

δue ¼ δuC
e þ 1

ðω2 − ω2
cÞ
ðω2δvν − ðωc · δvνÞωc

þ iωωc × δvνÞ ð15Þ

yields δue proportional to δne and valid up to OðG2
FÞ.

Finally, substituting Eq. (15) into the electrons continuity
equation, one derives the linear dispersion relation of
Trivelpiece-Gould modes modified by a neutrino beam.
As a remark, note that in Eq. (11) and afterward it is assumed
ω2 ≠ ω2

c, with no real loss of generality since the possible
mode with ω2 ¼ ω2

c is neutrino independent, see Sec. IV B.
Proceeding as explained gives

δpν ¼
ffiffiffi
2

p
GFδne

ðω − k · uν0Þðω2 − ω2
cÞ

×

�
ðω2 − ω2

cÞk −
V2

c2
ðω2k − ðk · ωcÞωc

þ iðω − k · uν0Þωc × k −
k · ωc

ω
uν0 × ðk × ωcÞ

þ ik½uν0 · ðωc × kÞ�
��

: ð16Þ

On the other hand, the neutrino velocity perturbation is
derived from δpν according to

δuν ¼
c2

Eν0

�
δpν −

uν0 · δpν

c2
uν0

�
; ð17Þ

as found from the relativistic energy-momentum relation,
where Eν0 is the zero-order neutrino beam energy. Using
Eqs. (16) and (17), we derive a long expression for δuν,
which in turn gives δnν from Eq. (7). These expressions are
shown in the Appendix, allowing us to determine δvν as
proportional to δne.
Without loss of generality, we assume the ambient

magnetic field along the z axis and a wave vector in the
x − z plane, as shown in Fig. 1, so that

ωc ¼ ωcẑ; k ¼ kðsin θ; 0; cos θÞ: ð18Þ

One then has implicitly the dispersion relation

ðω4 − ω2
Hω

2 þ ω2
pω

2
ccos2θÞδne

¼ n0ωðω2k · δvν − ðk · ωcÞðωc · δvνÞþ iωk ·ðωc × δvνÞÞ

¼
ffiffiffi
2

p
GFn0

mec2
½ω2ðc2k2 − ω2Þδnν − c2ðk · ωcÞ2δnν

þ ωðk · ωcÞðωc · uν0Þδnν þ nν0ωðk · ωcÞðωc · δuνÞ
− iω2k · ðnν0ωc × δuν þ ωc × uν0δnνÞ�; ð19Þ

in terms of the upper-hybrid frequency ωH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
p þ ω2

c

q
.

The neutrino continuity equation was used to eliminate
k · uν0. The quantities δuν and δnν are both long expres-
sions proportional to δne as shown in Eqs. (A1) and (A2) in
the Appendix. Therefore, for δne ≠ 0, one obtains the
dispersion relation from Eq. (19).
Without neutrinos (δvν ≡ 0) one would regain the

Trivelpiece-Gould dispersion relation [16,17], namely,
ω4 − ω2

Hω
2 þ ω2

pω
2
ccos2θ ¼ 0. For simplicity, at this point

it was assumed ωp ≫ kvT so that V ≈ ωp=k, yielding a
nicer expression for the classical contribution, i.e., the left-
hand side of Eq. (19). Thermal effects can be recovered
through the systematic replacement ω2

p → ω2
p þ k2v2T .

We note that in the unmagnetized case (ωc ¼ 0) using
Eq. (19), together with the appropriate special case from
Eq. (A2), gives the same found in [21–23], namely,

ω2 ¼ ω2
p þ

Δðc2k2 − ω2
pÞ2

ðω − k · uν0Þ2
×

�
1 −

ðk · uν0Þ2
c2k2

�
; ð20Þ

introducing the dimensionless quantity

Δ ¼ 2G2
Fn0nν0

mec2Eν0
: ð21Þ

To obtain Eq. (20), in the numerator of the term propor-
tional to Δ it was replaced the unperturbed approximation

FIG. 1. Geometry of Trivelpiece-Gould modes.
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ω ≈ ωp whenever convenient, since this neutrino term is
already a correction. To proceed to the magnetized case,
observe that the neutrino contribution in Eq. (19) can be
relevant only within a resonance condition where ReðωÞ≈
k · uν0, due to the small value of the Fermi constant GF ¼
1.45 × 10−62. By construction, our calculations retain terms
up to OðΔÞ.
Before embarking in the general case, two subcases

are illustrative: wave propagation perpendicular or parallel

to the ambient magnetic field, as discussed in the next
section.

IV. PARTICULAR SUBCASES

A. Wave propagation perpendicular to the ambient
magnetic field

Supposing upper-hybrid oscillations with k⊥ωc and
ω ≠ 0, one finds from Eqs. (19), (A1), and (A2),

ω2 − ω2
H − Δω2

c ¼
Δ

ðω − k · uν0Þ2
�
1 −

ω2

c2k2

�
½ðc2k2 − ω2Þðc2k2 − ðk · uν0Þ2Þ þ ðuν0 · ðωc × kÞÞ2�

−
Δω2

cðω2 − ω2
HÞ

ω2 − ω2
c

þ Δðc2k2 − ðk · uν0Þ2Þω2

ðω − k · uν0Þ2ðω2 − ω2
cÞ
�
1 −

ω2

c2k2

�
ðω2 − ω2

HÞ

−
Δ
�
uν0 · ðωc × kÞ

�
2

ðω − k · uν0Þ2ðω2 − ω2
cÞ
�
1 −

ω2

c2k2

�
ðω2 − ω2

HÞ

þ i
Δ
�
uν0 · ðωc × kÞ

��
c2k2 − ðk · uν0Þω

�
ðω − k · uν0Þ2ðω2 − ω2

cÞ
ðω2 − ω2

HÞ: ð22Þ

The right-hand side of Eq. (22) is always a perturbation due
to the very small value of the Fermi constant and it is
legitimate to replace in it ω2 → ω2

H whenever possible and
useful. In particular, this substitution allows us to discard
the explicit imaginary contribution which is proportional to
Δðω2 − ω2

HÞ ≈ 0 within the accuracy of the approximation.
The replacement is supported by the numerical results too.
We are left with

ω2 − ω2
H − Δω2

c ¼
Δ

ðω − k · uν0Þ2
�
1 −

ω2

c2k2

�

× ½ðc2k2 − ω2Þðc2k2 − ðk · uν0Þ2Þ
þ ðuν0 · ðωc × kÞÞ2�: ð23Þ

The nonresonant term Δω2
c on the left-hand side of

Eq. (23) is always very small for realistic conditions, so that
it can be dropped too. The right-hand side of the same
equation can yield a significant contribution, provided
the neutrino beam becomes resonant with the upper-hybrid
frequency, so that we set

ωH ¼ k · uν0; ω ¼ ωH þ δ; jδj ≪ ωH; ð24Þ

converting Eq. (23) into

ω2 ¼ ω2
H þ Δ

ðω − k · uν0Þ2
× ½ðc2k2 − ω2

HÞ2 þ ðuν0 · ðωc × kÞÞ2�

×

�
1 −

ω2
H

c2k2

�
; ð25Þ

which is almost Eq. (20) with the replacement ωp → ωH

appropriated to the magnetized case.
To enhance the neutrino contribution in Eq. (25), ideally

one would have ωH ≪ ck. In the nonmagnetized case, to
avoid Landau damping, one also needs ω ≫ hk · vei,
where hi denotes the statistical average of the electrons
velocities ve. For almost isotropic electron equilibrium, it
amounts to ω ≫ kvT . This sets [21–23] an upper limit in
the wave number or k ¼ ω=vT at which the instability
saturates due to electron Landau damping. Although not
mandatory, we define k ¼ ω=vT ≈ ωH=vT in the magnet-
ized case, to access an easier comparison with the unmag-
netized results. Notice that now cyclotron Landau damping
is significant for ω ≈ lωc, where l is an integer. Such
exceptional, damped modes would be described within a
kinetic treatment, which is outside the present model.
In the present context it can be defined

k ¼ ðk; 0; 0Þ; ωc ¼ ð0; 0;ωcÞ;
uν0 ¼ uν0ðcosφ sinΘ; sinφ sinΘ; cosΘÞ; ð26Þ

where for ultrarelativistic neutrinos uν0 ≈ c. As argued
above, setting the wave number k≡ ωH=vT transforms
Eq. (25) into

ω2 ¼ ω2
H þ Δω4

Hc
4=v4T

ðω − k · uν0Þ2
��

1 −
v2T
c2

�
2

þ ω2
cv2T

ω2
Hc

2
sin2φsin2Θ

�
: ð27Þ
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In view of ω2
c < ω2

H and the nonrelativistic assumption
v2T ≪ c2, Eq. (27) can be approximated by

ω2 ¼ ω2
H þ Δω4

Hc
4=v4T

ðω − k · uν0Þ2
; ð28Þ

exactly the same as the nonmagnetized result in Eq. (20) for
the maximal neutrino perturbation, provided when replac-
ing ωp → ωH. Moreover, using Eq. (24) it is found that�

δ

ωH

�
3

¼ Δ
2

�
c
vT

�
4

; ð29Þ

which corresponds to an unstable mode with

Im

�
δ

ωH

�
¼

ffiffiffi
3

p
Δ1=3

�
c

2vT

�
4=3

> 0: ð30Þ

Presently the result (30) is the same as the maximal
instability growth rate of Refs. [21–23], with the simple
replacement of the plasma frequency by the upper-hybrid
frequency. Since ωH > ωp, one has an even stronger
instability in the magnetized case. Moreover, denoting ϕ
as the angle between k and uν0, from the resonance
condition we find cosϕ ≈ ωH=ðckÞ ≈ vT=c ≪ 1, showing
that the neutrino beam propagates almost perpendicularly
to the wave—but without a definite orientation regarding
the external magnetic field.
For typical type II core-collapse scenarios such as for

the supernova SN1987A, one has a neutrino burst of 1058

neutrinoswith energies around10–15MeV [24]. To get some
estimates, take Eν0 ¼ 10MeV;vT=c¼ 1=10;n0¼ 1034 m−3,
and appropriate for the center of the star. Moreover, in
core-collapse events, one has strong magnetic fields B0 ≈
106 − 108 T, and we takeB0 ¼ 5 × 107 T. For these param-
eters, we have ωp ¼ 5.64 × 1018 rad=s, a gyrofrequency
ωc ¼ 8.78 × 1018 rad=s, and ωH ¼ 1.04 × 1019 rad=s,
showing the salient role of magnetization. The instability
growth rate from Eq. (30) is shown in Fig. 2 as a function
of the neutrino beam density nν0 between 1034–1037 m−3.
Typically, one has 1=ImðδÞ ≈ 10−11 s, to be compared with
the characteristic time of supernova explosions, around
1 second.

B. Wave propagation parallel to the ambient
magnetic field

When k∥ωc, or θ ¼ 0°, Eq. (19) simplifies to

ðω2 − ω2
cÞðω2 − ω2

pÞδne

¼
ffiffiffi
2

p
GFn0

mec2
ðω2 − ω2

cÞðc2k2 − ω2Þδnν: ð31Þ

By inspection, the classical mode with ω2 ¼ ω2
c has no

neutrino contribution so that it will be ignored. Therefore,
we can replace ω2 ≈ ω2

p ≠ ω2
c on the right-hand side of

Eq. (31) to obtain

ðω2 − ω2
pÞδne ¼

ffiffiffi
2

p
GFn0

mec2
ðc2k2 − ω2

pÞδnν; ð32Þ

a result which could be directly confirmed from Eqs. (7),
(8), and (10). Now using Eq. (A2) for δnν, from Eq. (32) we
rederive Eq. (20). Therefore, for parallel propagation, the
ambient magnetic field does not modify the instability at
all. Proceeding as usual, setting

ωp ¼ k · uν0; ω ¼ ωp þ δ; jδj ≪ ωp; ð33Þ

the unstable mode is found with

�
δ

ωp

�
3

¼ Δ
2

ð1 − cos2ϕÞ3
cos4ϕ

; ð34Þ

where ϕ is the angle between k and uν0 so that
ωp ≈ ck cosϕ. For parallel propagation (k∥B0) the issue
of Landau damping becomes relevant for resonant particles
gyrating around the magnetic field with the same angular
frequency as the wave electric field, or ω − lωc − kvz ≈ 0,
where l is an integer and vz is the component of the
electrons velocity in the direction of B0. For the funda-
mental mode (l ¼ 0) and quasi-isotropic particle distribu-
tion function, one then needs k ≪ ωp=vT and so cosϕ ≫
vT=c. Finally, one obtains

Im

�
δ

ωp

�
¼

ffiffiffi
3

p
Δ1=3

�
c

2vT

�
4=3

> 0; ð35Þ

which is well documented in the literature [21–23] and
where cosϕ ≈ vT=c ≪ 1 was selected. In this sense,
Eq. (35) is the upper limit of the instability growth rate,
avoiding Landau damping.
It is interesting to compare with the magnetic field

dominated case. Using Eq. (35) and exactly the same
parameters of Sec. IVA, one gets the result shown in Fig. 3,

34 35 36 37
0

4

8

12

16

log10 nv0 m 3

Im
10

10
s

1

FIG. 2. Instability growth rate from Eq. (30) for Eν0 ¼
10 MeV; vT=c ¼ 1=10; n0 ¼ 1034 m−3; B0 ¼ 5 × 107 T, as a
function of neutrino beam number density nν0, for k⊥ωc.
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showing a significantly smaller (but still fast) instability
growth rate when compared to Fig. 2. The main conclusion
is that a strong ambient magnetic field can have a marked
impact on the neutrino-plasma unstable mode, at least for
certain wave vector orientations.

V. GENERAL CASE

For arbitrary angle θ, Eq. (19) becomes more demand-
ing. To start solving it, notice that from inspection of
Eqs. (A1) and (A2) at resonance the terms containing
δuν ∼ ðω − k · uν0Þ−1 in Eq. (19) are generically less
singular than those with δnν ∼ ðω − k · uν0Þ−2. In this
way, dropping the δuν terms, the linear dispersion relation
can be simplified to

ðω4 − ω2
Hω

2 þ ω2
pω

2
ccos2θÞδne

¼
ffiffiffi
2

p
GFn0

mec2
½ω2ðc2k2 − ω2Þ − c2ðk · ωcÞ2

þ ωðk · ωcÞðωc · uν0Þ − iω2k · ðωc × uν0Þ�δnν: ð36Þ

Moreover, at resonance (ω ≈ k · uν0) it is possible to
considerably simplify Eq. (A2) as

δnν ¼
ffiffiffi
2

p
GFnν0δne

Eν0ðω − k · uν0Þ2ðω2 − ω2
cÞ

×

�
1 −

ω2

c2k2

�

×

�
ðω2 − ω2

cÞc2k2 − ω2ω2
p þ

ω2
p

ω
ðk · ωcÞðuν0 · ωcÞ

− iω2
p½uν0 · ðωc × kÞ�

�
: ð37Þ

Inserting (37) into Eq. (36) and replacing whenever
convenient the zero-order expression ðk · ωcÞ2 ≈ k2ω2

ðω2
H − ω2Þ=ω2

p in the neutrino term, it is found after some
rearrangements that

ω4−ω2
Hω

2þω2
pω

2
ccos2θ

¼ Δ
ðω−k ·uν0Þ2ðω2−ω2

cÞ
×

�
1−

ω2

c2k2

�

×

	�
ω

ωp
ððω2−ω2

cÞc2k2−ω2
pω

2Þþωpðk ·ωcÞðuν0 ·ωcÞ
�
2

þω2
pω

2½uν0 · ðωc×kÞ�2þ ic2k2½uν0 · ðωc×kÞ�

× ðω4−ω2
Hω

2þω2
pω

2
ccos2θÞ



: ð38Þ

As verified, the explicitly imaginary part in Eq. (39)
vanishes in the order of accuracy of the calculation since
ω4 − ω2

Hω
2 þ ω2

pω
2
ccos2θ ¼ OðΔÞ. Hence, the final gen-

eral dispersion relation reads

ω4−ω2
Hω

2þω2
pω

2
ccos2θ

¼ Δ
ðω−k ·uν0Þ2ðω2−ω2

cÞ
×

�
1−

ω2

c2k2

�

×

	�
ω

ωp
ððω2−ω2

cÞc2k2−ω2
pω

2Þþωpðk ·ωcÞðuν0 ·ωcÞ
�
2

þω2
pω

2½uν0 · ðωc×kÞ�2


: ð39Þ

Moreover, (a) for k∥ωc it can be used uν0 · ωc ¼
ðk · uν0Þωc=k ≈ ωpωc=k in the neutrino term, reducing
Eq. (39) to Eq. (20); (b) for k⊥ωc and with ω ≈ ωH,
Eq. (39) reduces to Eq. (25).
Despite the fact that the general result encompasses the

subcases of Sec. IV, it was useful to provide a more detailed
treatment of some particular geometries, in view of the not
so transparent algebra involved in Eq. (39). Nevertheless,
the power of the general dispersion relation is that it gives
the perturbation of Trivelpiece-Gould modes by neutrino
effects for an arbitrary angular orientation of the wave
vector, neutrino beam, and ambient magnetic field.
To enhance the neutrino contribution in Eq. (39) one has

ω ≈ k · uν0 ≪ ck. At the same time, Landau damping is
relevant for resonant particles with ω − lωc − kzvz ≈ 0,
where kz ¼ k cos θ. To avoid this in the case of the funda-
mental mode (l ¼ 0) one then needs k ≪ ω=ðvT cos θÞ or
just k ≪ ω=vT , for simplicity and similarity to the previous
choices. In this context, as before we set the wave number
k ¼ ω=vT , similarly to Eq. (35), with the understanding that
the obtained growth rate estimate is the upper limit of it.
It can be verified that neutrino beam velocities compat-

ible with juν0j ≈ c ≫ vT ¼ ω=k ¼ k · uν0=k are given by

uν0 ¼ ðvT sin θ þ c cos α cos θ; c sin α; vT cos θ

− c cos α sin θÞ; ð40Þ

where α is an arbitrary angle. Setting ω ¼ ω� þ δ, where
jδj ≪ ω� and where
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FIG. 3. Instability growth rate from Eq. (35) for
Eν0 ¼ 10 MeV; vT=c ¼ 1=10; n0 ¼ 1034 m−3, as a function of
neutrino beam number density nν0, for k∥ωc.
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ω2
� ¼ 1

2
ðω2

H � Ω2Þ;
Ω2 ¼ ððω2

p − ω2
cÞ2 þ 4ω2

pω
2
csin2θÞ1=2 ð41Þ

gives the unperturbed frequencies and working as before,
the unstable root with ImðδÞ > 0 is found with

ImðδÞ ¼
ffiffiffi
3

p
Δ1=3

24=3jω2
� − ω2

cj1=3ω1=3
� Ω2=3

× f½ω2
�ððω2

� − ω2
cÞc2=v2T − ω2

pÞ
þ ω2

pω
2
c cos θðcos θ − ðc=vTÞ cos α sin θÞ�ω2

�=ω
2
p

þ ω2
cω

2
pω

4
�ðc2=v2TÞsin2θsin2αg1=3: ð42Þ

It turns out that the choice of α is not numerically
relevant for realistic physical estimates. Setting α ¼ 0°,
using the nonrelativistic assumption v2T=c

2 ≪ 1 and replac-
ing the zero-order dispersion relation ω2

pω
2
c cos2 θ ¼

ω2
Hω

2
� − ω4

� whenever convenient allows us to simplify
Eq. (42) as

Im

�
δ

ω�

�
¼

ffiffiffi
3

p
Δ1=3

�
ω2
�jω2

� − ω2
cj

ω2
pΩ2

�
1=3

�
c

2vT

�
4=3

: ð43Þ

Equation (43) is our final general result. When k⊥ωc

and ω2
� ¼ ω2þ ≈ ω2

H, it reproduces Eq. (30), while for
ω2
� ¼ ω2

− ≈ 0 one has δ ≈ 0, justifying the neglect of the
zero frequency mode in Sec. IVA. On the other hand,
when k∥ωc and ω2

� ≈ ω2
p, it reproduces Eq. (35), while

setting ω2
� ≈ ω2

c gives δ ≈ 0, which is in accordance with
Sec. IV B where ω2 ≈ ω2

c was observed to be associated
with zero neutrino density fluctuations. Notice that all
neutrino effects shows up with the multiplicative factor
Δ1=3 ∼G2=3

F .
For some numerical estimates and for comparison we

set the same parameters of the previous sections, namely,
n0 ¼ 1034 m−3; B ¼ 5× 107 T; vT ¼ c=10;Eν0 ¼ 10 MeV
with a prescribed equilibrium neutrino number density
nν0 ¼ 1035 m−3 but keeping θ free, allowing a detailed
observation of the dependence of the growth rate on the
angle. The results are shown in Figs. 4 and 5 below,
applying respectively for ω− and ωþ. In particular, in
Fig. 4 for θ ¼ π=2 rad, perpendicular propagation gives
δ ≈ 0 corresponding to ω2 ¼ ω2

− ¼ 0. Similarly, in par-
ticular, in Fig. 5 for parallel propagation gives δ ≈ 0

corresponding to ω2 ¼ ω2þ ¼ ω2
c > ω2

p ¼ ω2
− for the

chosen parameters. Finally, it can be verified that using
the more general expression (42) and also allowing the
angle α to vary does not appreciably change the qualitative
and quantitative findings.

VI. CONCLUSION

In this work the destabilization of Trivelpiece-Gould
modes due to the interaction with a neutrino burst was
established. The growth rate in dense magnetized plasma
under intense neutrino beams was found to be significant,
as in the case of conditions near the core of magnetized
supernovae. It is found that the ambient magnetic field can
enhance the instability, as in the case of perpendicular
propagation where the essential result is the replacement
of the plasma frequency by the upper-hybrid frequency as
the natural inverse time scale of the instability. The very
general growth rate (43) can be used in the analysis of
neutrino-plasma interactions in a magnetized medium, in
empirical tests of our understanding of the coupling
between charged leptons and neutrinos. In particular, a
complete treatment of the angular orientations of the wave
vector, neutrino beam, and magnetic field is necessary for
the plasma diagnostics and accuracy of the proposed
model. Finally, the electron cyclotron Landau damping
would be accessible by means of a kinetic treatment.
As discussed in the Introduction, a microscopic modeling
would be also desirable in order to access the later stages of
the reactive instability.
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FIG. 4. Instability growth rate from Eq. (43) as a function of
θ, using the mode ω−, for n0 ¼ 1034 m−3; nν0 ¼ 1035 m−3;
B¼ 5×107 T; vT ¼ c=10; Eν0 ¼ 10MeV.
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FIG. 5. Instability growth rate from Eq. (43) as a function of
θ, using the mode ωþ, for n0 ¼ 1034 m−3; nν0 ¼ 1035 m−3;
B ¼ 5 × 107 T; vT ¼ c=10; Eν0 ¼ 10 MeV.
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APPENDIX: FULL EXPRESSIONS OF δuν AND δnν

Following the procedure outlined in Sec. III assuming ω2 ≠ ω2
c we get

δuν ¼
ffiffiffi
2

p
GFδnec2

Eν0ðω − k · uν0Þðω2 − ω2
cÞ

×

��
ω2 − ω2

c −
ω2ω2

p

c2k2

�
kþ ω2

p

c2k2
k · ωcωc

þ ω2
p

c2k2
k · ωc

ω
uν0 × ðk × ωcÞ −

iω2
p

c2k2
ωωc × k −

iω2
p

c2k2
½uν0 · ðωc × kÞ�k

þ iω2
p

c2k2
ðk · uν0Þðωc × kÞ − uν0

c2

��
ω2 − ω2

c −
ω2ω2

p

c2k2

�
ðk · uν0Þ

þ ω2
p

c2k2
ðk · ωcÞðuν0 · ωcÞ −

iω2
p

c2k2
ωuν0 · ðωc × kÞ

��
: ðA1Þ

Then from the neutrino continuity equation we get

δnν ¼
ffiffiffi
2

p
GFnν0δnec2

Eν0ðω − k · uν0Þ2ðω2 − ω2
cÞ

×

�
ðω2 − ω2

cÞk2 −
ω2ω2

p

c2
þ ω2

p

c2k2
ðk · ωcÞ2

þ ω2
p

c2k2
ðk · ωcÞ

ω
k · ½uν0 × ðk × ωcÞ� −

iω2
p

c2
½uν0 · ðωc × kÞ�

−
ðk · uν0Þ

c2

��
ω2 − ω2

c −
ω2ω2

p

c2k2

�
ðk · uν0Þ þ

ω2
p

c2k2
ðk · ωcÞðuν0 · ωcÞ −

iω2
p

c2k2
ωuν0 · ðωc × kÞ

��
: ðA2Þ

Both expressions are needed to evaluate the neutrino contribution in the full dispersion relation shown in Eq. (19).
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