24 research outputs found

    Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats

    Get PDF
    BACKGROUND: Oxidative stress is involved in cisplatin-nephrotoxicity. However, it has not completely established if reactive nitrogen species and nitrosative stress are involved in this experimental model. The purpose of this work was to study the role of peroxynitrite, a reactive nitrogen specie, in cisplatin-nephrotoxicity using the compound 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron (III) (FeTPPS), a soluble complex able to metabolize peroxynitrite. RESULTS: In rats treated with cisplatin (a single intraperitoneal dose of 7.5 mg/kg body weight), renal nitrosative stress was made evident by the increase in 3-nitrotyrosine on day 3. In addition, cisplatin-induced nephrotoxicity was evident by the histological damage of proximal tubular cells and by the increase in (a) serum creatinine, (b) blood urea nitrogen, and (c) urinary excretion of N-acetyl-β-D-glucosaminidase and total protein. Cisplatin-induced nitrosative stress and nephrotoxicity were attenuated by FeTPPS-treatment (15 mg/kg body weight, intraperitoneally, every 12 hours for 3 days). CONCLUSIONS: Nitrosative stress is involved in cisplatin-induced nephrotoxicity in rats. Our data suggest that peroxynitrite is involved, at least in part, in cisplatin-induced nephrotoxicity and protein nitration

    Garlic's ability to prevent in vitro Cu(2+)-induced lipoprotein oxidation in human serum is preserved in heated garlic: effect unrelated to Cu(2+)-chelation

    Get PDF
    BACKGROUND: It has been shown that several extracts and compounds derived from garlic are able to inhibit Cu(2+)-induced low density lipoprotein oxidation. In this work we explored if the ability of aqueous garlic extract to prevent in vitro Cu(2+)-induced lipoprotein oxidation in human serum is affected by heating (a) aqueous garlic extracts or (b) garlic cloves. In the first case, aqueous extract of raw garlic and garlic powder were studied. In the second case, aqueous extract of boiled garlic cloves, microwave-treated garlic cloves, and pickled garlic were studied. It was also studied if the above mentioned preparations were able to chelate Cu(2+). METHODS: Cu(2+)-induced lipoprotein oxidation in human serum was followed by the formation of conjugated dienes at 234 nm and 37°C by 240 min in a phosphate buffer 20 mM, pH 7.4. Blood serum and CuSO(4 )were added to a final concentration of 0.67% and 0.0125 mM, respectively. The lag time and the area under the curve from the oxidation curves were obtained. The Cu(2+)-chelating properties of garlic extracts were assessed using an approach based upon restoring the activity of xanthine oxidase inhibited in the presence of 0.050 mM Cu(2+). The activity of xanthine oxidase was assessed by monitoring the production of superoxide anion at 560 nm and the formation of uric acid at 295 nm. Data were compared by parametric or non-parametric analysis of variance followed by a post hoc test. RESULTS: Extracts from garlic powder and raw garlic inhibited in a dose-dependent way Cu(2+)-induced lipoprotein oxidation. The heating of garlic extracts or garlic cloves was unable to alter significantly the increase in lag time and the decrease in the area under the curve observed with the unheated garlic extracts or raw garlic. In addition, it was found that the garlic extracts were unable to chelate Cu(2+). CONCLUSIONS: (a) the heating of aqueous extracts of raw garlic or garlic powder or the heating of garlic cloves by boiling, microwave or pickling do not affect garlic's ability to inhibit Cu(2+)-induced lipoprotein oxidation in human serum, and (b) this ability is not secondary to Cu(2+)-chelation

    S-allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin-induced oxidative and nitrosative stress and renal damage in vivo

    Get PDF
    BACKGROUND: Oxidative and nitrosative stress have been involved in gentamicin-induced nephrotoxicity. The purpose of this work was to study the effect of S-allylmercaptocysteine, a garlic derived compound, on gentamicin-induced oxidative and nitrosative stress and nephrotoxicity. In addition, the in vitro reactive oxygen species scavenging properties of S-allylmercaptocysteine were studied. RESULTS: S-allylmercaptocysteine was able to scavenge hydroxyl radicals and singlet oxygen in vitro. In rats treated with gentamicin (70 mg/Kg body weight, subcutaneously, every 12 h, for 4 days), renal oxidative stress was made evident by the increase in protein carbonyl content and 4-hydroxy-2-nonenal, and the nitrosative stress was made evident by the increase in 3-nitrotyrosine. In addition, gentamicin-induced nephrotoxicity was evident by the: (1) decrease in creatinine clearance and in activity of circulating glutathione peroxidase, and (2) increase in urinary excretion of N-acetyl-β-D-glucosaminidase, and (3) necrosis of proximal tubular cells. Gentamicin-induced oxidative and nitrosative stress and nephrotoxicity were attenuated by S-allylmercaptocysteine treatment (100 mg/Kg body weight, intragastrically, 24 h before the first dose of gentamicin and 50 mg/Kg body weight, intragastrically, every 12 h, for 4 days along gentamicin-treatment). CONCLUSION: In conclusion, S-allylmercaptocysteine is able to scavenge hydroxyl radicals and singlet oxygen in vitro and to ameliorate the gentamicin-induced nephrotoxicity and oxidative and nitrosative stress in vivo

    Hypothyroidism attenuates protein tyrosine nitration, oxidative stress and renal damage induced by ischemia and reperfusion: effect unrelated to antioxidant enzymes activities

    Get PDF
    BACKGROUND: It has been established that hypothyroidism protects rats against renal ischemia and reperfusion (IR) oxidative damage. However, it is not clear if hypothyroidism is able to prevent protein tyrosine nitration, an index of nitrosative stress, induced by IR or if antioxidant enzymes have involved in this protective effect. In this work it was explored if hypothyroidism is able to prevent the increase in nitrosative and oxidative stress induced by IR. In addition the activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was studied. Control and thyroidectomized (HTX) rats were studied 24 h of reperfusion after 60 min ischemia. METHODS: Male Wistar rats weighing 380 ± 22 g were subjected to surgical thyroidectomy. Rats were studied 15 days after surgery. Euthyroid sham-operated rats were used as controls (CT). Both groups of rats underwent a right kidney nephrectomy and suffered a 60 min left renal ischemia with 24 h of reperfusion. Rats were divided in four groups: CT, HTX, IR and HTX+IR. Rats were sacrificed and samples of plasma and kidney were obtained. Blood urea nitrogen (BUN) and creatinine were measured in blood plasma. Kidney damage was evaluated by histological analysis. Oxidative stress was measured by immunohistochemical localization of protein carbonyls and 4-hydroxy-2-nonenal modified proteins. The protein carbonyl content was measured using antibodies against dinitrophenol (DNP)-modified proteins. Nitrosative stress was measured by immunohistochemical analysis of 3-nitrotyrosine modified proteins. The activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was measured by spectrophotometric methods. Multiple comparisons were performed with ANOVA followed by Bonferroni t test. RESULTS: The histological damage and the rise in plasma creatinine and BUN induced by IR were significantly lower in HTX+IR group. The increase in protein carbonyls and in 3-nitrotyrosine and 4-hydroxy-2-nonenal modified proteins was prevented in HTX+IR group. IR-induced decrease in renal antioxidant enzymes was essentially not prevented by HTX in HTX+IR group. CONCLUSION: Hypothyroidism was able to prevent not only oxidative but also nitrosative stress induced by IR. In addition, the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase seem not to play a protective role in this experimental model

    Time course study of oxidative and nitrosative stress and antioxidant enzymes in K(2)Cr(2)O(7)-induced nephrotoxicity

    Get PDF
    BACKGROUND: Potassium dichromate (K(2)Cr(2)O(7))-induced nephrotoxicity is associated with oxidative and nitrosative stress. In this study we investigated the relation between the time course of the oxidative and nitrosative stress with kidney damage and alterations in the following antioxidant enzymes: Cu, Zn superoxide dismutase (Cu, Zn-SOD), Mn-SOD, glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). METHODS: Nephrotoxicity was induced in rats by a single injection of K(2)Cr(2)O(7). Groups of animals were sacrificed on days 1,2,3,4,6,8,10, and 12. Nephrotoxicity was evaluated by histological studies and by measuring creatinine clearance, serum creatinine, blood urea nitrogen (BUN), and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and total protein. Oxidative and nitrosative stress were measured by immunohistochemical localization of protein carbonyls and 3-nitrotyrosine, respectively. Cu, Zn-SOD, Mn-SOD, and CAT were studied by immunohistochemical localization. The activity of total SOD, CAT, GPx, and GR was also measured as well as serum and kidney content of chromium and urinary excretion of NO(2 )(-)/NO(3)(-). Data were compared by two-way analysis of variance followed by a post hoc test. RESULTS: Serum and kidney chromium content increased reaching the highest value on day 1. Nephrotoxicity was made evident by the decrease in creatinine clearance (days 1–4) and by the increase in serum creatinine (days 1–4), BUN (days 1–6), urinary excretion of NAG (days 1–4), and total protein (day 1–6) and by the structural damage to the proximal tubules (days 1–6). Oxidative and nitrosative stress were clearly evident on days 1–8. Urinary excretion of NO(2)(-)/NO(3)(- )decreased on days 2–6. Mn-SOD and Cu, Zn-SOD, estimated by immunohistochemistry, and total SOD activity remained unchanged. Activity of GPx decreased on days 3–12 and those of GR and CAT on days 2–10. Similar findings were observed by immunohistochemistry of CAT. CONCLUSION: These data show the association between oxidative and nitrosative stress with functional and structural renal damage induced by K(2)Cr(2)O(7). Renal antioxidant enzymes were regulated differentially and were not closely associated with oxidative or nitrosative stress or with kidney damage. In addition, the decrease in the urinary excretion of NO(2)(-)/NO(3)(- )was associated with the renal nitrosative stress suggesting that nitric oxide was derived to the formation of reactive nitrogen species involved in protein nitration

    Quinolinic Acid: An Endogenous Neurotoxin with Multiple Targets

    Get PDF
    Quinolinic acid (QUIN), a neuroactive metabolite of the kynurenine pathway, is normally presented in nanomolar concentrations in human brain and cerebrospinal fluid (CSF) and is often implicated in the pathogenesis of a variety of human neurological diseases. QUIN is an agonist of N-methyl-D-aspartate (NMDA) receptor, and it has a high in vivo potency as an excitotoxin. In fact, although QUIN has an uptake system, its neuronal degradation enzyme is rapidly saturated, and the rest of extracellular QUIN can continue stimulating the NMDA receptor. However, its toxicity cannot be fully explained by its activation of NMDA receptors it is likely that additional mechanisms may also be involved. In this review we describe some of the most relevant targets of QUIN neurotoxicity which involves presynaptic receptors, energetic dysfunction, oxidative stress, transcription factors, cytoskeletal disruption, behavior alterations, and cell death

    Renoprotective effect of the antioxidant curcumin: Recent findings

    Get PDF
    For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2), inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury
    corecore