54 research outputs found

    On the Maximal Strength of a First-Order Electroweak Phase Transition and its Gravitational Wave Signal

    Get PDF
    What is the maximum possible strength of a first-order electroweak phase transition and the resulting gravitational wave (GW) signal? While naively one might expect that supercooling could increase the strength of the transition to very high values, for strong supercooling the Universe is no longer radiation-dominated and the vacuum energy of the unstable minimum of the potential dominates the expansion, which can jeopardize the successful completion of the phase transition. After providing a general treatment for the nucleation, growth and percolation of broken phase bubbles during a first-order phase transition that encompasses the case of significant supercooling, we study the conditions for successful bubble percolation and completion of the electroweak phase transition in theories beyond the Standard Model featuring polynominal potentials. For such theories, these conditions set a lower bound on the temperature of the transition. Since the plasma cannot be significantly diluted, the resulting GW signal originates mostly from sound waves and turbulence in the plasma, rather than bubble collisions. We find the peak frequency of the GW signal from the phase transition to be generically f104f \gtrsim 10^{-4} Hz. We also study the condition for GW production by sound waves to be long-lasting (GW source active for approximately a Hubble time), showing it is generally not fulfilled in concrete scenarios. Because of this the sound wave GW signal could be weakened, with turbulence setting in earlier, resulting in a smaller overall GW signal as compared to current literature predictions.Comment: published versio

    A Note on Unparticle Decays

    Full text link
    The coupling of an unparticle operator O_U to Standard Model particles opens up the possibility of unparticle decays into standard model fields. We study this issue by analyzing the pole structure (and spectral function) of the unparticle propagator, corrected to account for one-loop polarization effects from virtual SM particles. We find that the propagator of a scalar unparticle (of scaling dimension 1 < d_U < 2) with a mass gap m_g develops an isolated pole, m_p^2-i m_p Gamma_p, with m_p^2 < m_g^2 below the unparticle continuum that extends above m_g (showing that the theory would be unstable without a mass gap). If that pole lies below the threshold for decay into two standard model particles the pole corresponds to a stable unparticle state (and its width Gamma_p is zero). For m_p^2 above threshold the width is non zero and related to the unparticle decay rate into Standard Model particles. This picture is valid for any value of d_U in the considered range.Comment: 11 pages, 4 figure

    Aspects of Phenomenology and Cosmology in Hidden sector extensions of the Standard Model

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Teórica. Fecha de lectura: 25-09-200

    Early Universe hypercharge breaking and neutrino mass generation

    Full text link
    We show that the conditions allowing for a spontaneous breaking of the U(1)YU(1)_Y hypercharge gauge symmetry of the Standard Model (SM) in the early Universe are generically present in extensions of the SM addressing the generation of light neutrino masses via radiative contributions. In such scenarios, the breaking of (hyper)charge at high-temperatures yields new possibilities for explaining the observed matter-antimatter asymmetry of the Universe. Considering for concreteness the Zee-Babu radiative neutrino mass generation model, we show that a period of hypercharge breaking prior to the electroweak phase transition could allow for successful baryogenesis via a non-conventional leptogenesis mechanism, based on the presence of charge-breaking masses for the SM leptons in the early Universe.Comment: 11 pages, 4 figure

    Fate of electroweak symmetry in the early Universe: Non-restoration and trapped vacua in the N2HDM

    Full text link
    Extensions of the Higgs sector of the Standard Model allow for a rich cosmological history around the electroweak scale. We show that besides the possibility of strong first-order phase transitions, which have been thoroughly studied in the literature, also other important phenomena can occur, like the non-restoration of the electroweak symmetry or the existence of vacua in which the Universe becomes trapped, preventing a transition to the electroweak minimum. Focusing on the next-to-minimal two-Higgs-doublet model (N2HDM) of type II and taking into account the existing theoretical and experimental constraints, we identify the scenarios of electroweak symmetry non-restoration, vacuum trapping and first-order phase transition in the thermal history of the Universe. We analyze these phenomena and in particular their relation to each other, and discuss their connection to the predicted phenomenology of the N2HDM at the LHC. Our analysis demonstrates that the presence of a global electroweak minimum of the scalar potential at zero temperature does not guarantee that the corresponding N2HDM parameter space will be physically viable: the existence of a critical temperature at which the electroweak phase becomes the deepest minimum is not sufficient for a transition to take place, necessitating an analysis of the tunnelling probability to the electroweak minimum for a reliable prediction of the thermal history of the Universe.Comment: 44 pages, 10 figures. Final version published in JCA

    The trap in the early Universe: impact on the interplay between gravitational waves and LHC physics in the 2HDM

    Full text link
    We analyze the thermal history of the 2HDM and determine the parameter regions featuring a first-order electroweak phase transition (FOEWPT) and also much less studied phenomena like high-temperature electroweak (EW) symmetry non-restoration and the possibility of vacuum trapping (i.e. the Universe remains trapped in an EW-symmetric vacuum throughout the cosmological evolution, despite at T=0T=0 the EW breaking vacuum is deeper). We show that the presence of vacuum trapping impedes a first-order EW phase transition in 2HDM parameter-space regions previously considered suitable for the realization of electroweak baryogenesis. Focusing then on the regions that do feature such a first-order transition, we show that the 2HDM parameter space that would yield a stochastic gravitational wave signal potentially detectable by the future LISA observatory is very contrived, and will be well probed by direct searches of 2HDM Higgs bosons at the HL-LHC, and (possibly) also via measurements of the self-coupling of the Higgs boson at 125 GeV. This has an important impact on the interplay between LISA and the LHC regarding the exploration of first-order phase transition scenarios in the 2HDM: the absence of new physics indications at the HL-LHC would severely limit the prospects of a detection by LISA. Finally, we demonstrate that as a consequence of the predicted enhancement of the self-coupling of the Higgs boson at 125 GeV the ILC would be able to probe the majority of the 2HDM parameter space yielding a FOEWPT through measurements of the self-coupling, with a large improvement in precision with respect to the HL-LHC.Comment: 41 pages, 13 figure

    Cosmology with the Laser Interferometer Space Antenna

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, los autores pertenecientes a la UAM y el nombre del grupo de colaboración, si lo hubiereThe Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational-wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational-wave observations by LISA to probe the universeThis work is partly supported by: A.G. Leventis Foundation; Academy of Finland Grants 328958 and 345070; Alexander S. Onassis Foundation, Scholarship ID: FZO 059-1/2018-2019; Amaldi Research Center funded by the MIUR program “Dipartimento di Eccellenza” (CUP: B81I18001170001); ASI Grants No. 2016-24-H.0 and No. 2016-24-H.1-2018; Atracción de Talento Grant 2019-T1/TIC-15784; Atracción de Talento contract no. 2019-T1/TIC-13177 granted by the Comunidad de Madrid; Ayuda ‘Beatriz Galindo Senior’ by the Spanish ‘Ministerio de Universidades’, Grant BG20/00228; Basque Government Grant (IT-979-16); Belgian Francqui Foundation; Centre national d’Etudes spatiales; Ben Gurion University Kreitman Fellowship, and the Israel Academy of Sciences and Humanities (IASH) & Council for Higher Education (CHE) Excellence Fellowship Program for International Postdoctoral Researchers; Centro de Excelencia Severo Ochoa Program SEV-2016-0597; CERCA program of the Generalitat de Catalunya; Cluster of Excellence “Precision Physics, Fundamental Interactions, and Structure of Matter” (PRISMA? EXC 2118/1); Comunidad de Madrid, Contrato de Atracción de Talento 2017-T1/TIC-5520; Czech Science Foundation GAČR, Grant No. 21-16583M; Delta ITP consortium; Department of Energy under Grant No. DE-SC0008541, DE-SC0009919 and DESC0019195; Deutsche Forschungsgemeinschaft (DFG), Project ID 438947057; Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy - EXC 2121 Quantum Universe - 390833306; European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project CoGraDS - CZ.02.1.01/0.0/0.0/15 003/0000437); European Union’s H2020 ERC Consolidator Grant “GRavity from Astrophysical to Microscopic Scales” (Grant No. GRAMS-815673); European Union’s H2020 ERC, Starting Grant Agreement No. DarkGRA-757480; European Union’s Horizon 2020 programme under the Marie Sklodowska-Curie Grant Agreement 860881 (ITN HIDDeN); European Union’s Horizon 2020 Research and Innovation Programme Grant No. 796961, “AxiBAU” (K.S.); European Union’s Horizon 2020 Research Council grant 724659 MassiveCosmo ERC-2016-COG; FCT through national funds (PTDC/FIS-PAR/31938/2017) and through project “BEYLA – BEYond LAmbda” with Ref. Number PTDC/FIS-AST/0054/2021; FEDER-Fundo Europeu de Desenvolvimento Regional through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI-01-0145- FEDER-031938) and research Grants UIDB/04434/2020 and UIDP/04434/2020; Fondation CFM pour la Recherche in France; Foundation for Education and European Culture in Greece; French ANR project MMUniverse (ANR-19-CE31-0020); FRIA Grant No.1.E.070.19F of the Belgian Fund for Research, F.R. S.-FNRS Fundação para a Ciência e a Tecnologia (FCT) through Contract No. DL 57/2016/CP1364/ CT0001; Fundação para a Ciência e a Tecnologia (FCT) through Grants UIDB/04434/2020, UIDP/04434/ 2020, PTDC/FIS-OUT/29048/2017, CERN/FIS-PAR/0037/2019 and “CosmoTests – Cosmological tests of gravity theories beyond General Relativity” CEECIND/00017/2018; Generalitat Valenciana Grant PROMETEO/2021/083; Grant No. 758792, project GEODESI; Government of Canada through the Department of Innovation, Science and Economic Development and Province of Ontario through the Ministry of Colleges and Universities; Grants-in-Aid for JSPS Overseas Research Fellow (No. 201960698); I?D Grant PID2020-118159GB-C41 of the Spanish Ministry of Science and Innovation; INFN iniziativa specifica TEONGRAV; Israel Science Foundation (Grant No. 2562/20); Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. 20H01899 and 20H05853; IFT Centro de Excelencia Severo Ochoa Grant SEV-2; Kavli Foundation and its founder Fred Kavli; Minerva Foundation; Ministerio de Ciencia e Innovacion Grant PID2020-113644GB-I00; NASA Grant 80NSSC19K0318; NASA Hubble Fellowship grants No. HST-HF2-51452.001-A awarded by the Space Telescope Science Institute with NASA contract NAS5-26555; Netherlands Organisation for Science and Research (NWO) Grant Number 680-91-119; new faculty seed start-up grant of the Indian Institute of Science, Bangalore, the Core Research Grant CRG/2018/002200 of the Science and Engineering; NSF Grants PHY-1820675, PHY-2006645 and PHY-2011997; Polish National Science Center Grant 2018/31/D/ ST2/02048; Polish National Agency for Academic Exchange within the Polish Returns Programme under Agreement PPN/PPO/2020/1/00013/U/00001; Pró-Reitoria de Pesquisa of Universidade Federal de Minas Gerais (UFMG) under Grant No. 28359; Ramón y Cajal Fellowship contract RYC-2017-23493; Research Project PGC2018-094773-B-C32 [MINECO-FEDER]; Research Project PGC2018-094773-B-C32 [MINECO-FEDER]; ROMFORSK Grant Project. No. 302640; Royal Society Grant URF/R1/180009 and ERC StG 949572: SHADE; Shota Rustaveli National Science Foundation (SRNSF) of Georgia (Grant FR/18-1462); Simons Foundation/SFARI 560536; SNSF Ambizione grant; SNSF professorship Grant (No. 170547); Spanish MINECO’s “Centro de Excelencia Severo Ochoa” Programme Grants SEV-2016- 0597 and PID2019-110058GB-C22; Spanish Ministry MCIU/AEI/FEDER Grant (PGC2018-094626-BC21); Spanish Ministry of Science and Innovation (PID2020-115845GB-I00/AEI/10.13039/ 501100011033); Spanish Proyectos de I?D via Grant PGC2018-096646-A-I00; STFC Consolidated Grant ST/T000732/1; STFC Consolidated Grants ST/P000762/1 and ST/T000791/1; STFC Grant ST/ S000550/1; STFC Grant ST/T000813/1; STFC Grants ST/P000762/1 and ST/T000791/1; STFC under the research Grant ST/P000258/1; Swiss National Science Foundation (SNSF), project The Non-Gaussian Universe and Cosmological Symmetries, Project Number: 200020-178787; Swiss National Science Foundation Professorship Grants No. 170547 and No. 191957; SwissMap National Center for Competence in Research; “The Dark Universe: A Synergic Multi-messenger Approach” Number 2017X7X85K under the MIUR program PRIN 2017; UK Space Agency; UKSA Flagship Project, Eucli

    Scalar Loops in Little Higgs Models

    Get PDF
    Loops of the scalar particles present in Little Higgs models generate radiatively scalar operators that have been overlooked before in Little Higgs analyses. We compute them using a technique, recently proposed to deal with scalar fluctuations in non-linear sigma models, that greatly simplifies the calculation. In particular models some of these operators are not induced by loops of gauge bosons or fermions, are consistent with the Little Higgs symmetries that protect the Higgs boson mass, and must also be included in the Lagrangian. In general, scalar loops multiplicatively renormalize the tree-level scalar operators, O_S -> O_S [1- N \Lambda^2/(4\pi f)^2] with large N (e.g. N ~ 20 for the Littlest Higgs), suggesting a true UV cutoff \Lambda < 4 \pi f/\sqrt{N} significantly below the estimate 4\pi f of naive dimensional analysis. This can have important implications for the phenomenology and viability of Little Higgs models.Comment: 28 pages, LaTe

    Population-based colorectal cancer screening programmes using a faecal immunochemical test:Should faecal haemoglobin cut-offs differ by age and sex?

    Get PDF
    Abstract Background The Basque Colorectal Cancer Screening Programme has both high participation rate and high compliance rate of colonoscopy after a positive faecal occult blood test (FIT). Although, colorectal cancer (CRC) screening with biannual (FIT) has shown to reduce CRC mortality, the ultimate effectiveness of the screening programmes depends on the accuracy of FIT and post-FIT colonoscopy, and thus, harms related to false results might not be underestimated. Current CRC screening programmes use a single faecal haemoglobin concentration (f-Hb) cut-off for colonoscopy referral for both sexes and all ages. We aimed to determine optimum f-Hb cut-offs by sex and age without compromising neoplasia detection and interval cancer proportion. Methods Prospective cohort study using a single-sample faecal immunochemical test (FIT) on 444,582 invited average-risk subjects aged 50–69 years. A result was considered positive at ≥20 μg Hb/g faeces. Outcome measures were analysed by sex and age for a wide range of f-Hb cut-offs. Results We analysed 17,387 positive participants in the programme who underwent colonoscopy. Participation rate was 66.5%. Men had a positivity rate for f-Hb of 8.3% and women 4.8% (p < 0.0001). The detection rate for advanced neoplasia (cancer plus advanced adenoma) was 44.0‰ for men and 15.9‰ for women (p < 0.0001). The number of colonoscopies required decreased in both sexes and all age groups through increasing the f-Hb cut-off. However, the loss in CRC detection increased by up to 28.1% in men and 22.9% in women. CRC missed were generally at early stages (Stage I-II: from 70.2% in men to 66.3% in women). Conclusions This study provides detailed outcomes in men and women of different ages at a range of f-Hb cut-offs. We found differences in positivity rates, neoplasia detection rate, number needed to screen, and interval cancers in men and women and in younger and older groups. However, there are factors other than sex and age to consider when consideration is given to setting the f-Hb cut-off
    corecore