77 research outputs found

    Should we recommend organic crop foods on the basis of health benefits? Letter to the editor regarding the article by Baranski et al

    Full text link
    Mulet Salort, JM. (2014). Should we recommend organic crop foods on the basis of health benefits? Letter to the editor regarding the article by Baranski et al. British Journal of Nutrition. 112(10):1745-1747. doi:10.1017/S0007114514002645S1745174711210Bradbury, K. E., Balkwill, A., Spencer, E. A., Roddam, A. W., Reeves, G. K., … Pirie, K. (2014). Organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. British Journal of Cancer, 110(9), 2321-2326. doi:10.1038/bjc.2014.148Dangour A , Aikenhead A & Hayter A , et al. (2009) Comparison of putative health effects of organically and conventionally produced foodstuffs: a systematic review. http://multimedia.food.gov.uk/multimedia/pdfs/organicreviewreport.pdf.Dangour, A. D., Dodhia, S. K., Hayter, A., Allen, E., Lock, K., & Uauy, R. (2009). Nutritional quality of organic foods: a systematic review. The American Journal of Clinical Nutrition, 90(3), 680-685. doi:10.3945/ajcn.2009.28041Barański, M., Średnicka-Tober, D., Volakakis, N., Seal, C., Sanderson, R., Stewart, G. B., … Leifert, C. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. British Journal of Nutrition, 112(5), 794-811. doi:10.1017/s0007114514001366Tuomisto, H. L., Hodge, I. D., Riordan, P., & Macdonald, D. W. (2012). Does organic farming reduce environmental impacts? – A meta-analysis of European research. Journal of Environmental Management, 112, 309-320. doi:10.1016/j.jenvman.2012.08.018Gutteridge, J. M. C., & Halliwell, B. (2010). Antioxidants: Molecules, medicines, and myths. Biochemical and Biophysical Research Communications, 393(4), 561-564. doi:10.1016/j.bbrc.2010.02.071Seufert, V., Ramankutty, N., & Foley, J. A. (2012). Comparing the yields of organic and conventional agriculture. Nature, 485(7397), 229-232. doi:10.1038/nature11069Chandel, N. S., & Tuveson, D. A. (2014). The Promise and Perils of Antioxidants for Cancer Patients. New England Journal of Medicine, 371(2), 177-178. doi:10.1056/nejmcibr1405701Norwegian Scientific Committee for Food Safety Comparison of organic and conventional food and food production (2014) http://www.english.vkm.no/eway/default.aspx?pid = 278&trg = Content_6575&Main_6359 = 6575:0:31,2558&Content_6575 = 6393:1949052::0:6464:1:::0:0.United States Department of Agriculture (2010) Oxygen Radical Absorbance Capacity (ORAC) of selected foods, release 2. http://www.ars.usda.gov/services/docs.htm?docid = 15866.Ingenbleek, Y., & McCully, K. S. (2012). Vegetarianism produces subclinical malnutrition, hyperhomocysteinemia and atherogenesis. Nutrition, 28(2), 148-153. doi:10.1016/j.nut.2011.04.009Organización de Consumidores y Usuarios (2012) Alimentos Ecológicos, naturalmente nos dan la razón (Organic food, we were naturally right). http://www.ocu.org/alimentacion/alimentos/noticias/alimentos-ecologicos-naturalmente-nos-dan-la-razon.Guéguen, L., & Pascal, G. (2010). Le point sur la valeur nutritionnelle et sanitaire des aliments issus de l’agriculture biologique. Cahiers de Nutrition et de Diététique, 45(3), 130-143. doi:10.1016/j.cnd.2010.02.002Bast, A., & Haenen, G. R. M. M. (2013). Ten misconceptions about antioxidants. Trends in Pharmacological Sciences, 34(8), 430-436. doi:10.1016/j.tips.2013.05.010Benbrook C , Zhao X & Davies N , et al. (2008) New evidence confirms the nutritional superiority of plant-based organic foods. http://organiccenter.org/reportfiles/NutrientContentReport.pdf (accessed June 2014).Curl, C. L., Fenske, R. A., & Elgethun, K. (2003). Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environmental Health Perspectives, 111(3), 377-382. doi:10.1289/ehp.5754Smith-Spangler, C., Brandeau, M. L., Hunter, G. E., Bavinger, J. C., Pearson, M., Eschbach, P. J., … Bravata, D. M. (2012). Are Organic Foods Safer or Healthier Than Conventional Alternatives? Annals of Internal Medicine, 157(5), 348. doi:10.7326/0003-4819-157-5-201209040-00007Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants & Redox Signaling, 18(14), 1818-1892. doi:10.1089/ars.2012.458

    The appeal-to-nature fallacy : homeopathy and biodynamic agriculture in official EU regulations

    Get PDF
    There is no scientific evidence to support the affirmation that organic food is more nutritious or that its production is more sustainable than traditional food. In addition, productivity is very low and, concomitantly, the price is higher. This article reviews the basics of EU regulations on organic food production and concludes that, for the most part, they mislead the consumer and are not science based. Most of them rely on concepts related to the appeal-to-nature fallacy, with the explicit presence of pseudosciences, such as homeopathy or biodynamic agriculture. On the other hand, interesting aspects such as the carbon footprint or local production are not present in the regulations, and technological improvements that could be useful for organic food production are excluded

    Editorial: Ion Homeostasis in Plant Stress and Development

    Full text link
    This paper was funded by grants PID2019-104054GB-I00 and RTC-2017-6468-2-AR from the Spanish "Agencia Estatal de Investigacion".Mulet, JM.; Campos, F.; Yenush, L. (2020). Editorial: Ion Homeostasis in Plant Stress and Development. Frontiers in Plant Science. 11:1-3. https://doi.org/10.3389/fpls.2020.618273S1311Bromham, L., Hua, X., & Cardillo, M. (2020). Macroevolutionary and macroecological approaches to understanding the evolution of stress tolerance in plants. Plant, Cell & Environment, 43(12), 2832-2846. doi:10.1111/pce.13857Colmenero-Flores, J. M., Franco-Navarro, J. D., Cubero-Font, P., Peinado-Torrubia, P., & Rosales, M. A. (2019). Chloride as a Beneficial Macronutrient in Higher Plants: New Roles and Regulation. International Journal of Molecular Sciences, 20(19), 4686. doi:10.3390/ijms20194686Dreyer, I., & Uozumi, N. (2011). Potassium channels in plant cells. FEBS Journal, 278(22), 4293-4303. doi:10.1111/j.1742-4658.2011.08371.xFlowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: adaptations in halophytes. Annals of Botany, 115(3), 327-331. doi:10.1093/aob/mcu267Galvan-Ampudia, C. S., Julkowska, M. M., Darwish, E., Gandullo, J., Korver, R. A., Brunoud, G., … Testerink, C. (2013). Halotropism Is a Response of Plant Roots to Avoid a Saline Environment. Current Biology, 23(20), 2044-2050. doi:10.1016/j.cub.2013.08.042Korver, R. A., Berg, T., Meyer, A. J., Galvan‐Ampudia, C. S., Tusscher, K. H. W. J., & Testerink, C. (2019). Halotropism requires phospholipase Dζ1‐mediated modulation of cellular polarity of auxin transport carriers. Plant, Cell & Environment, 43(1), 143-158. doi:10.1111/pce.13646Locascio, A., Marqués, M. C., García-Martínez, G., Corratgé-Faillie, C., Andrés-Colás, N., Rubio, L., … Yenush, L. (2019). BCL2-ASSOCIATED ATHANOGENE4 Regulates the KAT1 Potassium Channel and Controls Stomatal Movement. Plant Physiology, 181(3), 1277-1294. doi:10.1104/pp.19.00224Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. doi:10.1016/j.abb.2005.10.018Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., … Bouwmeester, H. (2010). Physiological Effects of the Synthetic Strigolactone Analog GR24 on Root System Architecture in Arabidopsis: Another Belowground Role for Strigolactones?      . Plant Physiology, 155(2), 721-734. doi:10.1104/pp.110.16664

    Pseudociencias y medicina

    Full text link
    © SEBBM. Se autoriza la reproducción del contenido, siempre que se cite la procedencia.[ES] Los científicos tenemos la obligación moral de divulgar lo que hacemos y que la gente nos entienda. Hay mucho en juego, entre otras cosas, evitar que proliferen estafas como las que se comentan en este artículo.Mulet Salort, JM. (2015). Pseudociencias y medicina. Revista de la Sociedad Española de Bioquímica y Biología Molecular. (178):7-10. http://hdl.handle.net/10251/65505S71017

    Letter to the Editor regarding the article by Paganelli et Al

    Full text link
    Mulet Salort, JM. (2011). Letter to the Editor regarding the article by Paganelli et Al. Chemical Research in Toxicology. 24(5):609-609. doi:10.1021/tx200077hS60960924

    A Method for a Fast Evaluation of the Biostimulant Potential of Different Natural Extracts for Promoting Growth or Tolerance against Abiotic Stress

    Full text link
    [EN] Under adverse environmental conditions, biostimulants can help crops withstand abiotic stress while increasing productivity. We have designed a sequential system based on two different biological model organisms¿the baker¿s yeast Saccharomyces cerevisiae and the plant Arabidopsis thaliana¿to evaluate the potential as biostimulants of a battery of 11 different natural extracts on a blind-test basis. Firstly, yeast assays consist in a drop test in solid medium, and a BioScreen® test with liquid cultures. The method is completed with two plant assays to assess effects on germination and growth. The designed method provided relevant data on the ability of each extract to promote biomass accumulation under normal conditions and in the presence of abiotic stresses, such as drought, salinity, or cold. Besides, this laboratory-based method allowed to assess the potential toxicity or unsuspected deleterious effect of each extract in a short period of time (six months) with low budget and space requirements. We could also test the effects of the biostimulants during germination, vegetative, and reproductive growth, under normal and stressed conditions. As each product is tested on different organisms at different developmental stages, we could get some preliminary information on the mode of action. This method enables a fast screen of many different products, in order to select potential candidates to be marketed as biostimulants, avoiding long and expensive field tests with previously uncharacterized productsThis study is a part of the research agreement: Estudio de estimulación del crecimiento y protector frente al estrés abiótico de diferentes formulaciones en levadura, Arabidopsis y tomate funded by Agrométodos SA.Saporta Bon, R.; Bou, C.; Frías, V.; Mulet, JM. (2019). A Method for a Fast Evaluation of the Biostimulant Potential of Different Natural Extracts for Promoting Growth or Tolerance against Abiotic Stress. Agronomy. 9(3):1-16. https://doi.org/10.3390/agronomy9030143S1169

    The Biostimulant, Potassium Humate Ameliorates Abiotic Stress in Arabidopsis thaliana by Increasing Starch Availability

    Full text link
    [EN] Potassium humate is a widely used biostimulant known for its ability to enhance growth and improve tolerance to abiotic stress. However, the molecular mechanisms explaining its effects remain poorly understood. In this study, we investigated the mechanism of action of potassium humate using the model plant Arabidopsis thaliana. We demonstrated that a formulation of potassium humate effectively increased the fresh weight accumulation of Arabidopsis plants under normal conditions, salt stress (sodium or lithium chloride), and particularly under osmotic stress (mannitol). Interestingly, plants treated with potassium humate exhibited a reduced antioxidant response and lower proline accumulation, while maintaining photosynthetic activity under stress conditions. The observed sodium and osmotic tolerance induced by humate was not accompanied by increased potassium accumulation. Additionally, metabolomic analysis revealed that potassium humate increased maltose levels under control conditions but decreased levels of fructose. However, under stress, both maltose and glucose levels decreased, suggesting changes in starch utilization and an increase in glycolysis. Starch concentration measurements in leaves showed that plants treated with potassium humate accumulated less starch under control conditions, while under stress, they accumulated starch to levels similar to or higher than control plants. Taken together, our findings suggest that the molecular mechanism underlying the abiotic stress tolerance conferred by potassium humate involves its ability to alter starch content under normal growth conditions and under salt or osmotic stress.This research was funded by the CDTI program project EXP 00137666/IDI-20210456. awarded to CALDIC Ibérica S.L. and the research contract. "DESARROLLO DE FORMULADOS BIOESTIMULANTES Y BIOFERTILIZANTES INNOVADORES DE ORIGEN NATURAL (CALBIO) DESTINADOS A LA AGRICULTURA CONVENCIONAL Y ECOLÓGICA. ESTUDIO CIENTÍFICO DE EFECTOS SINÉRGICOS ENTRE BIOACTIVOS MICROBIANOS Y NO MICROBIANOS" Between CALDIC Ibérica S.L. and Universitat Politècnica de València. The APC was funded by the aforementioned research contract.Benito, P.; Bellón, J.; Porcel, R.; Yenush, L.; Mulet, JM. (2023). The Biostimulant, Potassium Humate Ameliorates Abiotic Stress in Arabidopsis thaliana by Increasing Starch Availability. International Journal of Molecular Sciences. 24(15):1-21. https://doi.org/10.3390/ijms241512140121241

    Use of Yucca (Yucca schidigera) Extracts as Biostimulants to Promote Germination and Early Vigor and as Natural Fungicides

    Full text link
    [EN] Climate change is increasing drought and salinity in many cultivated areas, therefore threatening food production. There is a great demand for novel agricultural inputs able to maintain yield under the conditions imposed by the anthropogenic global warming. Biostimulants have been proposed as a useful tool to achieve this objective. We have investigated the biostimulant effect of different yucca (Yucca schidigera) extracts on plant growth at different stages of development under different abiotic stress conditions. The extracts were tested in the model plant Arabidopsis thaliana, and in three different crops; tomato (Solanum lycopersicum var microtom), broccoli (Brassica oleracea var. italica) and lettuce (Lactuca sativa var romana). We have found that the investigated extracts are able to promote germination and early vigor under drought/osmotic and salt stress induced either by sodium chloride or lithium chloride. This effect is particularly strong in Arabidopsis thaliana and in the Brassicaceae broccoli. We have also determined using antibiograms against the model yeast Saccharomyces cerevisiae that the evaluated extracts may be used also as a natural fungicide. The results in this report show that yucca extracts may be used to enhance early vigor in some crops and as a natural fungicide, providing a new and useful tool for farmers.This research was funded by the CDTI program project EXP 00137666/IDI-20210456. awarded to CALDIC Iberica S.L. and the research contract. "DESARROLLO DE FORMULADOS BIOESTIMULANTES Y BIOFERTILIZANTES INNOVADORES DE ORIGEN NATURAL (CALBIO) DESTINADOS A LA AGRICULTURA CONVENCIONAL Y ECOLOGICA. ESTUDIO CIENTIFICO DE EFECTOS SINERGICOS ENTRE BIOACTIVOS MICROBIANOS Y NO MICROBIANOS" Between CALDIC Iberica S.L. and Universitat Politecnica de Valencia. The APC was funded by the afore mentioned research contract.Benito, P.; Ligorio, D.; Bellón, J.; Yenush, L.; Mulet, JM. (2023). Use of Yucca (Yucca schidigera) Extracts as Biostimulants to Promote Germination and Early Vigor and as Natural Fungicides. Plants. 12(2):1-12. https://doi.org/10.3390/plants1202027411212

    Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato

    Full text link
    [EN] Drought stress is one of the major threats to agriculture and concomitantly to food production. Tomato is one of the most important industrial crops, but its tolerance to water scarcity is very low. Traditional plant breeding has a limited margin to minimize this water requirement. In order to design novel biotechnological approaches to cope with this problem, we have screened a plant cDNA library from the halotolerant crop sugar beet (Beta vulgaris L.) for genes able to confer drought/osmotic stress tolerance to the yeast model system upon overexpression. We have identified the gene that encodes BvHb2, a class 2 non-symbiotic hemoglobin, which is present as a single copy in the sugar beet genome, expressed mainly in leaves and regulated by light and abiotic stress. We have evaluated its biotechnological potential in the model plant Arabidopsis thaliana and found that BvHb2 is able to confer drought and osmotic stress tolerance. We also generated transgenic lines of tomato (Solanum lycopersicum) overexpressing BvHb2 and found that the resulting plants are more resistant to drought-induce withering. In addition, transgenic lines overexpressing BvHb2 exhibit increased levels of iron content in leaves. Here, we show that class 2 non-symbiotic plant hemoglobins are targets to generate novel biotechnological crops tolerant to abiotic stress. The fact that these proteins are conserved in plants opens the possibility for using Non-GMO approaches, such as classical breeding, molecular breeding, or novel breeding techniques to increase drought tolerance using this protein as a target.This project was funded by the project PAID-00-10 "Introduccion De Genes Relacionados Con La Tolerancia A Estres Hidrico Y Oxidativo En Distintos Materiales Que Presentan Caracteristicas Utiles Para Su Uso Como Patrones De Plantas Horticolas De Interes Agronomico". (Ref. 2726) from the Universitat Politecnica de Valencia.Gisbert Domenech, MC.; Timoneda, A.; Porcel, R.; Ros, R.; Mulet, JM. (2020). Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato. Agronomy. 10(11):1-17. https://doi.org/10.3390/agronomy10111754S1171011Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. doi:10.1016/j.abb.2005.10.018Sinclair, T. R. (2011). Challenges in breeding for yield increase for drought. Trends in Plant Science, 16(6), 289-293. doi:10.1016/j.tplants.2011.02.008Burke, M., & Emerick, K. (2016). Adaptation to Climate Change: Evidence from US Agriculture. American Economic Journal: Economic Policy, 8(3), 106-140. doi:10.1257/pol.20130025Zaveri, E., Russ, J., & Damania, R. (2020). Rainfall anomalies are a significant driver of cropland expansion. Proceedings of the National Academy of Sciences, 117(19), 10225-10233. doi:10.1073/pnas.1910719117Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266-269. doi:10.1126/science.aaz7614Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28(1), 169-183. doi:10.1016/j.biotechadv.2009.11.005Romero, C., Bellés, J. M., Vayá, J. L., Serrano, R., & Culiáñez-Macià, F. A. (1997). Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta, 201(3), 293-297. doi:10.1007/s004250050069Xiao, B., Huang, Y., Tang, N., & Xiong, L. (2007). Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics, 115(1), 35-46. doi:10.1007/s00122-007-0538-9Van Camp, W. (2005). Yield enhancement genes: seeds for growth. Current Opinion in Biotechnology, 16(2), 147-153. doi:10.1016/j.copbio.2005.03.002Locascio, A., Andrés-Colás, N., Mulet, J. M., & Yenush, L. (2019). Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. International Journal of Molecular Sciences, 20(9), 2133. doi:10.3390/ijms20092133Mulet, J. M., Alemany, B., Ros, R., Calvete, J. J., & Serrano, R. (2004). Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21(4), 303-312. doi:10.1002/yea.1076Porcel, R., Bustamante, A., Ros, R., Serrano, R., & Mulet Salort, J. M. (2018). BvCOLD1: A novel aquaporin from sugar beet (Beta vulgarisL.) involved in boron homeostasis and abiotic stress. Plant, Cell & Environment, 41(12), 2844-2857. doi:10.1111/pce.13416Smagghe, B. J., Hoy, J. A., Percifield, R., Kundu, S., Hargrove, M. S., Sarath, G., … Appleby, C. A. (2009). Review: Correlations between oxygen affinity and sequence classifications of plant hemoglobins. Biopolymers, 91(12), 1083-1096. doi:10.1002/bip.21256Bogusz, D., Appleby, C. A., Landsmann, J., Dennis, E. S., Trinick, M. J., & Peacock, W. J. (1988). Functioning haemoglobin genes in non-nodulating plants. Nature, 331(6152), 178-180. doi:10.1038/331178a0Taylor, E. R., Nie, X. Z., MacGregor, A. W., & Hill, R. D. (1994). A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Molecular Biology, 24(6), 853-862. doi:10.1007/bf00014440Spyrakis, F., Bruno, S., Bidon-Chanal, A., Luque, F. J., Abbruzzetti, S., Viappiani, C., … Mozzarelli, A. (2011). Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport. IUBMB Life, 63(5), 355-362. doi:10.1002/iub.470Gupta, K. J., Hebelstrup, K. H., Mur, L. A. J., & Igamberdiev, A. U. (2011). Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide. FEBS Letters, 585(24), 3843-3849. doi:10.1016/j.febslet.2011.10.036Trevaskis, B., Watts, R. A., Andersson, C. R., Llewellyn, D. J., Hargrove, M. S., Olson, J. S., … Peacock, W. J. (1997). Two hemoglobin genes in Arabidopsis thaliana: The evolutionary origins of leghemoglobins. Proceedings of the National Academy of Sciences, 94(22), 12230-12234. doi:10.1073/pnas.94.22.12230Hill, R. D. (2012). Non-symbiotic haemoglobins—What’s happening beyond nitric oxide scavenging? AoB PLANTS, 2012. doi:10.1093/aobpla/pls004Hunt, P. W., Klok, E. J., Trevaskis, B., Watts, R. A., Ellis, M. H., Peacock, W. J., & Dennis, E. S. (2002). Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 99(26), 17197-17202. doi:10.1073/pnas.212648799Yang, L.-X., Wang, R.-Y., Ren, F., Liu, J., Cheng, J., & Lu, Y.-T. (2005). AtGLB1 Enhances the Tolerance of Arabidopsis to Hydrogen Peroxide Stress. Plant and Cell Physiology, 46(8), 1309-1316. doi:10.1093/pcp/pci140Hebelstrup, K. H., & Jensen, E. Ø. (2007). Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta, 227(4), 917-927. doi:10.1007/s00425-007-0667-zWang, Y., Elhiti, M., Hebelstrup, K. H., Hill, R. D., & Stasolla, C. (2011). Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis. Plant Physiology and Biochemistry, 49(10), 1108-1116. doi:10.1016/j.plaphy.2011.06.005Vigeolas, H., Hühn, D., & Geigenberger, P. (2011). Nonsymbiotic Hemoglobin-2 Leads to an Elevated Energy State and to a Combined Increase in Polyunsaturated Fatty Acids and Total Oil Content When Overexpressed in Developing Seeds of Transgenic Arabidopsis Plants. Plant Physiology, 155(3), 1435-1444. doi:10.1104/pp.110.166462Sainz, M., Pérez-Rontomé, C., Ramos, J., Mulet, J. M., James, E. K., Bhattacharjee, U., … Becana, M. (2013). Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. The Plant Journal, 76(5), 875-887. doi:10.1111/tpj.12340FAOSTAThttp://www.fao.org/faostat/es/#homeSánchez-Rodríguez, E., Rubio-Wilhelmi, Mªm., Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., … Ruiz, J. M. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178(1), 30-40. doi:10.1016/j.plantsci.2009.10.001Gur, A., & Zamir, D. (2004). Unused Natural Variation Can Lift Yield Barriers in Plant Breeding. PLoS Biology, 2(10), e245. doi:10.1371/journal.pbio.0020245McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., & Fraley, R. (1986). Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Reports, 5(2), 81-84. doi:10.1007/bf00269239Gisbert, C., Rus, A. M., Boları́n, M. C., López-Coronado, J. M., Arrillaga, I., Montesinos, C., … Moreno, V. (2000). The Yeast HAL1 Gene Improves Salt Tolerance of Transgenic Tomato. Plant Physiology, 123(1), 393-402. doi:10.1104/pp.123.1.393Römer, S., Fraser, P. D., Kiano, J. W., Shipton, C. A., Misawa, N., Schuch, W., & Bramley, P. M. (2000). Elevation of the provitamin A content of transgenic tomato plants. Nature Biotechnology, 18(6), 666-669. doi:10.1038/76523Muir, S. R., Collins, G. J., Robinson, S., Hughes, S., Bovy, A., Ric De Vos, C. H., … Verhoeyen, M. E. (2001). Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology, 19(5), 470-474. doi:10.1038/88150Schijlen, E., Ric de Vos, C. H., Jonker, H., van den Broeck, H., Molthoff, J., van Tunen, A., … Bovy, A. (2006). Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnology Journal, 4(4), 433-444. doi:10.1111/j.1467-7652.2006.00192.xFischhoff, D. A., Bowdish, K. S., Perlak, F. J., Marrone, P. G., McCormick, S. M., Niedermeyer, J. G., … Fraley, R. T. (1987). Insect Tolerant Transgenic Tomato Plants. Nature Biotechnology, 5(8), 807-813. doi:10.1038/nbt0887-807KIM, J. W. (1994). Disease Resistance in Tobacco and Tomato Plants Transformed with the Tomato Spotted Wilt Virus Nucleocapsid Gene. Plant Disease, 78(6), 615. doi:10.1094/pd-78-0615Fillatti, J. J., Kiser, J., Rose, R., & Comai, L. (1987). Efficient Transfer of a Glyphosate Tolerance Gene into Tomato Using a Binary Agrobacterium Tumefaciens Vector. Nature Biotechnology, 5(7), 726-730. doi:10.1038/nbt0787-726Z.-Q., Z., F.-Q., C., Y.-X., L., & G.-X., J. (2002). Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Reports, 21(2), 141-146. doi:10.1007/s00299-002-0489-1Roy, R., Purty, R. S., Agrawal, V., & Gupta, S. C. (2005). Transformation of tomato cultivar ‘Pusa Ruby’ with bspA gene from Populus tremula for drought tolerance. Plant Cell, Tissue and Organ Culture, 84(1), 56-68. doi:10.1007/s11240-005-9000-3Sheehy, R. E., Kramer, M., & Hiatt, W. R. (1988). Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proceedings of the National Academy of Sciences, 85(23), 8805-8809. doi:10.1073/pnas.85.23.8805Klee, H. J. (1993). Ripening Physiology of Fruit from Transgenic Tomato (Lycopersicon esculentum) Plants with Reduced Ethylene Synthesis. Plant Physiology, 102(3), 911-916. doi:10.1104/pp.102.3.911Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., & Kishore, G. M. (1991). Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. The Plant Cell, 3(11), 1187-1193. doi:10.1105/tpc.3.11.1187Arrillaga, I., Gil-Mascarell, R., Gisbert, C., Sales, E., Montesinos, C., Serrano, R., & Moreno, V. (1998). Expression of the yeast HAL2 gene in tomato increases the in vitro salt tolerance of transgenic progenies. Plant Science, 136(2), 219-226. doi:10.1016/s0168-9452(98)00122-8García-Abellan, J. O., Egea, I., Pineda, B., Sanchez-Bel, P., Belver, A., Garcia-Sogo, B., … Bolarin, M. C. (2014). Heterologous expression of the yeastHAL5gene in tomato enhances salt tolerance by reducing shoot Na+accumulation in the long term. Physiologia Plantarum, 152(4), 700-713. doi:10.1111/ppl.12217Safdar, N., Yasmeen, A., & Mirza, B. (2010). An insight into functional genomics of transgenic lines of tomato cv Rio Grande harbouring yeast halotolerance genes. Plant Biology, 13(4), 620-631. doi:10.1111/j.1438-8677.2010.00412.xSade, N., Vinocur, B. J., Diber, A., Shatil, A., Ronen, G., Nissan, H., … Moshelion, M. (2008). Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytologist, 181(3), 651-661. doi:10.1111/j.1469-8137.2008.02689.xGoel, D., Singh, A. K., Yadav, V., Babbar, S. B., & Bansal, K. C. (2010). Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma, 245(1-4), 133-141. doi:10.1007/s00709-010-0158-0Goel, D., Singh, A. K., Yadav, V., Babbar, S. B., Murata, N., & Bansal, K. C. (2011). Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. Journal of Plant Physiology, 168(11), 1286-1294. doi:10.1016/j.jplph.2011.01.010Mishra, K. B., Iannacone, R., Petrozza, A., Mishra, A., Armentano, N., La Vecchia, G., … Nedbal, L. (2012). Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Science, 182, 79-86. doi:10.1016/j.plantsci.2011.03.022Seo, Y. S., Choi, J. Y., Kim, S. J., Kim, E. Y., Shin, J. S., & Kim, W. T. (2012). Constitutive expression of CaRma1H1, a hot pepper ER-localized RING E3 ubiquitin ligase, increases tolerance to drought and salt stresses in transgenic tomato plants. Plant Cell Reports, 31(9), 1659-1665. doi:10.1007/s00299-012-1278-0Muñoz-Mayor, A., Pineda, B., Garcia-Abellán, J. O., Antón, T., Garcia-Sogo, B., Sanchez-Bel, P., … Bolarin, M. C. (2012). Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. Journal of Plant Physiology, 169(5), 459-468. doi:10.1016/j.jplph.2011.11.018Zhang, X., Zou, Z., Gong, P., Zhang, J., Ziaf, K., Li, H., … Ye, Z. (2010). Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnology Letters, 33(2), 403-409. doi:10.1007/s10529-010-0436-0Kanhonou, R., Serrano, R., & Ros Palau, R. (2001). Plant Molecular Biology, 47(5), 571-579. doi:10.1023/a:1012227913356Rosa Téllez, S., Kanhonou, R., Castellote Bellés, C., Serrano, R., Alepuz, P., & Ros, R. (2020). RNA-Binding Proteins as Targets to Improve Salt Stress Tolerance in Crops. Agronomy, 10(2), 250. doi:10.3390/agronomy10020250Brunelli, J. P., & Pall, M. L. (1993). A series of yeast shuttle vectors for expression of cDNAs and other DNA sequences. Yeast, 9(12), 1299-1308. doi:10.1002/yea.320091203Gietz, D., Jean, A. S., Woods, R. A., & Schiestl, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20(6), 1425-1425. doi:10.1093/nar/20.6.1425Hoeberichts, F. A., Perez-Valle, J., Montesinos, C., Mulet, J. M., Planes, M. D., Hueso, G., … Serrano, R. (2010). The role of K+ and H+ transport systems during glucose- and H2O2-induced cell death in Saccharomyces cerevisiae. Yeast, 27(9), 713-725. doi:10.1002/yea.1767Sayle, R. (1995). RASMOL: biomolecular graphics for all. Trends in Biochemical Sciences, 20(9), 374-376. doi:10.1016/s0968-0004(00)89080-5Hoy, J. A., & Hargrove, M. S. (2008). The structure and function of plant hemoglobins. Plant Physiology and Biochemistry, 46(3), 371-379. doi:10.1016/j.plaphy.2007.12.016Kay, R., Chan, A., Daly, M., & McPherson, J. (1987). Duplication of CaMV 35 S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science, 236(4806), 1299-1302. doi:10.1126/science.236.4806.1299Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262Bissoli, G., Niñoles, R., Fresquet, S., Palombieri, S., Bueso, E., Rubio, L., … Serrano, R. (2012). Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. The Plant Journal, 70(4), 704-716. doi:10.1111/j.1365-313x.2012.04921.xWitte, C.-P., No�l, L., Gielbert, J., Parker, J., & Romeis, T. (2004). Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Molecular Biology, 55(1), 135-147. doi:10.1007/s11103-004-0501-ySaporta, R., Bou, C., Frías, V., & Mulet, J. (2019). A Method for a Fast Evaluation of the Biostimulant Potential of Different Natural Extracts for Promoting Growth or Tolerance against Abiotic Stress. Agronomy, 9(3), 143. doi:10.3390/agronomy9030143Trujillo-Moya, C., & Gisbert, C. (2012). The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell, Tissue and Organ Culture (PCTOC), 111(1), 41-48. doi:10.1007/s11240-012-0168-zKoncz, C., & Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular and General Genetics MGG, 204(3), 383-396. doi:10.1007/bf00331014Ríos, G., Cabedo, M., Rull, B., Yenush, L., Serrano, R., & Mulet, J. M. (2013). Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Research, 13(1), 97-106. doi:10.1111/1567-1364.12013Citation for the Real Statistics Software or Website. Real Statistics Using Excelhttp://www.real-statistics.com/appendix/citation-real-statistics-software-website/Tukey, J. W. (1949). Comparing Individual Means in the Analysis of Variance. Biometrics, 5(2), 99. doi:10.2307/3001913Forment, J., Naranjo, M. A., Roldan, M., Serrano, R., & Vicente, O. (2002). Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. The Plant Journal, 30(5), 511-519. doi:10.1046/j.1365-313x.2002.01311.xHunt, P. W., Watts, R. A., Trevaskis, B., Llewelyn, D. J., Burnell, J., Dennis, E. S., & Peacock, W. J. (2001). Plant Molecular Biology, 47(5), 677-692. doi:10.1023/a:1012440926982Dohm, J. C., Minoche, A. E., Holtgräwe, D., Capella-Gutiérrez, S., Zakrzewski, F., Tafer, H., … Himmelbauer, H. (2013). The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 505(7484), 546-549. doi:10.1038/nature12817Hebelstrup, K. H., Igamberdiev, A. U., & Hill, R. D. (2007). Metabolic effects of hemoglobin gene expression in plants. Gene, 398(1-2), 86-93. doi:10.1016/j.gene.2007.01.039Hargrove, M. S., Brucker, E. A., Stec, B., Sarath, G., Arredondo-Peter, R., Klucas, R. V., … Phillips, G. N. (2000). Crystal structure of a nonsymbiotic plant hemoglobin. Structure, 8(9), 1005-1014. doi:10.1016/s0969-2126(00)00194-5Leiva-Eriksson, N., Pin, P. A., Kraft, T., Dohm, J. C., Minoche, A. E., Himmelbauer, H., & Bülow, L. (2014). Differential Expression Patterns of Non-Symbiotic Hemoglobins in Sugar Beet (Beta vulgaris ssp. vulgaris). Plant and Cell Physiology, 55(4), 834-844. doi:10.1093/pcp/pcu027NARANJO, M. A., FORMENT, J., ROLDAN, M., SERRANO, R., & VICENTE, O. (2006). Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell and Environment, 29(10), 1890-1900. doi:10.1111/j.1365-3040.2006.01565.xRausell, A., Kanhonou, R., Yenush, L., Serrano, R., & Ros, R. (2003). The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. The Plant Journal, 34(3), 257-267. doi:10.1046/j.1365-313x.2003.01719.xRus, A. M., Estañ, M. T., Gisbert, C., Garcia-Sogo, B., Serrano, R., Caro, M., … Bolarín, M. C. (2001). Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+ /Na+ selectivity under salt stress. Plant, Cell & Environment, 24(8), 875-880. doi:10.1046/j.1365-3040.2001.00719.xHoogewijs, D., Dewilde, S., Vierstraete, A., Moens, L., & Vinogradov, S. N. (2012). A Phylogenetic Analysis of the Globins in Fungi. PLoS ONE, 7(2), e31856. doi:10.1371/journal.pone.0031856Bai, X., Long, J., He, X., Yan, J., Chen, X., Tan, Y., … Xu, H. (2016). Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Scientific Reports, 6(1). doi:10.1038/srep26400Evangelou, E., Tsadilas, C., Tserlikakis, N., Tsitouras, A., & Kyritsis, A. (2016). Water Footprint of Industrial Tomato Cultivations in the Pinios River Basin: Soil Properties Interactions. Water, 8(11), 515. doi:10.3390/w8110515(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119Chen, Y., & Barak, P. (1982). Iron Nutrition of Plants in Calcareous Soils. Advances in Agronomy Volume 35, 217-240. doi:10.1016/s0065-2113(08)60326-0Dutt, M., Dhekney, S. A., Soriano, L., Kandel, R., & Grosser, J. W. (2014). Temporal and spatial control of gene expression in horticultural crops. Horticulture Research, 1(1). doi:10.1038/hortres.2014.4

    The effect of genotype by environment interaction, phenotypic plasticity and adaptation on Pinus halepensis reforestation establishment under expected climate drifts

    Full text link
    [EN] Genotype by environment interaction (GEI) is becoming an important issue within the proactive adaptive silviculture oriented to global changes. However, there is a considerable lack of information on how GEI and phenotypic plasticity may affect early establishment (survival and early growth) performance in many non-commercial forest species, such as Aleppo pine, a key species in semiarid forest restoration programs. The objectives of this study were to (1) evaluate the phenotypic plasticity and adaptation in the broad context of GEI of eleven Aleppo pine seed sources regarding survival, height and diameter growth after outplanting in contrasting core and marginal habitats representing core-to-dry and cold-to-core drifts and to (2) compare the efficiency of joint regression and Additive Main effect and Multiplication Interaction (AMMI) models in elucidating the pattern of the adaptation of the eleven seed sources regarding these traits. Even though phenotypic plasticity was low, more plasticity was observed in the core drift than the dry drift. Specific adaptation to extreme environments was coupled with lower phenotypic plasticity. Among traits, plasticity was lower for survival and height than for diameter in the dry drift and the opposite for the core drift. There were also significant environment, genotype and GEI effects. AMMI models revealed higher capabilities than joint regression in determining seed sources adaptation across environments. Specifically, seed sources with higher plasticity performed better on the core habitat conditions. Southern seed sources of Bética Septentrional and La Mancha suited more to the dry environment. However, Maestrazgo Los Serranos seed source grew better under the cooler local conditions. Levante Interior seed source performed as a generalist genotype adapted to both drifts. These results make a significant contribution towards reforestation programs with practical implications for abiotic stress tolerance and assisted population migration in response to climate change.This work was supported by two research projects: "Application of molecular biology techniques in forest restoration in Mediterranean environments, PAID-05-11" funded by the Universitat Politecnica de Valencia (UPV), program for supporting RandD of new multidisciplinary research lines; and the contract subscribed between the UPV and the Ministry of Environment, Rural and Marine affairs (Centro Nacional de Recursos Geneticos Forestales de Alaquas) through its public partnership TRAGSA titled: "Study of seedling quality and field performance of 12 seed sources of Pinus halepensis Mill.".Taibi, K.; Campo García, ADD.; Aguado, A.; Mulet Salort, JM. (2015). The effect of genotype by environment interaction, phenotypic plasticity and adaptation on Pinus halepensis reforestation establishment under expected climate drifts. Ecological Engineering. 84:218-228. https://doi.org/10.1016/j.ecoleng.2015.09.005S2182288
    corecore