95 research outputs found
DACH1-Driven Arterialization: Angiogenic Therapy for Ischemic Heart Disease?
J.L. de la Pompa is supported by grants PID2019-104776RB-I00 and
CB16/11/00399 (CIBER CV) from the Spanish Ministry of Science, Innovation
and Universities.S
Midkine-a Regulates the Formation of a Fibrotic Scar During Zebrafish Heart Regeneration.
Unlike the hearts of mammals, the adult zebrafish heart regenerates after injury. Heart cryoinjury in zebrafish triggers the formation of a fibrotic scar that gradually degrades, leading to regeneration. Midkine-a (Mdka) is a multifunctional cytokine that is activated after cardiac injury. Here, we investigated the role of mdka in zebrafish heart regeneration. We show that mdka expression was induced at 1-day post-cryoinjury (dpci) throughout the epicardial layer, whereas by 7 dpci expression had become restricted to the epicardial cells covering the injured area. To study the role of mdka in heart regeneration, we generated mdka-knock out (KO) zebrafish strains. Analysis of injured hearts showed that loss of mdka decreased endothelial cell proliferation and resulted in an arrest in heart regeneration characterized by retention of a collagenous scar. Transcriptional analysis revealed increases in collagen transcription and intense TGFβ signaling activity. These results reveal a critical role for mdka in fibrosis regulation during heart regeneration.This study was supported by Grants PID2019-104776RB-I00,
CB16/11/00399 (CIBER CV) and RD16/0011/0021 (TERCEL)
from the Spanish Ministry of Science, Innovation and
Universities (MCIU) and Grants from the Fundación BBVA
(Ref.: BIO14_298), Fundación La Marató (Ref.: 20153431) and
the European Commission through CardioNeT (Ref.: 28600)
from the European Commission to JLP. DG held a Ph.D.
fellowship linked to the Grant CardioNeT grant. The cost of this
publication was supported in part with funds from the European
Regional Development Fund. The CNIC was supported by the
Instituto de Salud Carlos III (ISCIII), the MCIU and the Pro
CNIC Foundation, and is a Severo Ochoa Centre of Excellence
(SEV-2015-0505).S
Fibrous Caps in Atherosclerosis Form by Notch-Dependent Mechanisms Common to Arterial Media Development.
Atheromatous fibrous caps are produced by smooth muscle cells (SMCs) that are recruited to the subendothelial space. We tested whether the recruitment mechanisms are the same as in embryonic artery development, which relies prominently on Notch signaling to form the subendothelial medial SMC layers.
Notch elements were expressed in regions of fibrous cap in human and mouse plaques. To assess the causal role of Notch signaling in cap formation, we studied atherosclerosis in mice where the Notch pathway was inactivated in SMCs by conditional knockout of the essential effector transcription factor RBPJ (recombination signal-binding protein for immunoglobulin kappa J region). The recruitment of cap SMCs was significantly reduced without major effects on plaque size. Lineage tracing revealed the accumulation of SMC-derived plaque cells in the cap region was unaltered but that Notch-defective cells failed to re-acquire the SMC phenotype in the cap. Conversely, to analyze whether the loss of Notch signaling is required for SMC-derived cells to accumulate in atherogenesis, we studied atherosclerosis in mice with constitutive activation of Notch signaling in SMCs achieved by conditional expression of the Notch intracellular domain. Forced Notch signaling inhibited the ability of medial SMCs to contribute to plaque cells, including both cap SMCs and osteochondrogenic cells, and significantly reduced atherosclerosis development.
Sequential loss and gain of Notch signaling is needed to build the cap SMC population. The shared mechanisms with embryonic arterial media assembly suggest that the cap forms as a neo-media that restores the connection between endothelium and subendothelial SMCs, transiently disrupted in early atherogenesis.This study was supported by a grant from the Ministerio de Ciencia e Innovación
with cofunding from the European Regional Development Fund (SAF2016-
75580-R and PID2019-108568RB-I00 to J.F. Bentzon and SAF2016-78370-R
to J.L. de la Pompa) and from the Novo Nordisk Foundation (NNF17OC0030688
to. J.F. Bentzon). The CNIC is supported by the Instituto de Salud Carlos III
(ISCIII), the Ministerio de Ciencia e Innovación, and the Pro CNIC Foundation and
is a Severo Ochoa Center of Excellence (SEV-2015-0505).S
Trabeculated Myocardium in Hypertrophic Cardiomyopathy: Clinical Consequences
Aims: Hypertrophic cardiomyopathy (HCM) is often accompanied by increased trabeculated myocardium (TM)-which clinical relevance is unknown. We aim to measure the left ventricular (LV) mass and proportion of trabeculation in an HCM population and to analyze its clinical implication. Methods and Results: We evaluated 211 patients with HCM (mean age 47.8 +/- 16.3 years, 73.0% males) with cardiac magnetic resonance (CMR) studies. LV trabecular and compacted mass were measured using dedicated software for automatic delineation of borders. Mean compacted myocardium (CM) was 160.0 +/- 62.0 g and trabecular myocardium (TM) 55.5 +/- 18.7 g. The percentage of trabeculated myocardium (TM%) was 26.7% +/- 6.4%. Females had significantly increased TM% compared to males (29.7 +/- 7.2 vs. 25.6 +/- 5.8, p < 0.0001). Patients with LVEF < 50% had significantly higher values of TM% (30.2% +/- 6.0% vs. 26.6% +/- 6.4%, p = 0.02). Multivariable analysis showed that female gender and neutral pattern of hypertrophy were directly associated with TM%, while dynamic obstruction, maximal wall thickness and LVEF% were inversely associated with TM%. There was no association between TM% with arterial hypertension, physical activity, or symptoms. Atrial fibrillation and severity of hypertrophy were the only variables associated with cardiovascular death. Multivariable analysis failed to demonstrate any correlation between TM% and arrhythmias. Conclusions: Approximately 25% of myocardium appears non-compacted and can automatically be measured in HCM series. Proportion of non-compacted myocardium is increased in female, non-obstructives, and in those with lower contractility. The amount of trabeculation might help to identify HCM patients prone to systolic heart failure
Plant characterization of genetically modified maize hybrids MON-89Ø34-3 × MON-88Ø17-3, MON-89Ø34-3 × MON-ØØ6Ø3-6, and MON-ØØ6Ø3-6: alternatives for maize production in Mexico
Environmental risk assessment (ERA) of genetically modified (GM) crops is a process to evaluate whether the biotechnology trait(s) in a GM crop may result in increased pest potential or harm to the environment. In this analysis, two GM insect-resistant (IR) herbicide-tolerant maize hybrids (MON-89Ø34-3 9 MON-88Ø17-3 and MON-89Ø34-3 9 MON-ØØ6Ø3-6) and one herbicide-tolerant GM hybrid (MON-ØØ6Ø3-6) were compared with conventional maize hybrids of similar genetic backgrounds. Two sets of studies, Experimental Phase and Pilot Phase, were conducted across five ecological regions (ecoregions) in Mexico during 2009–2013, and data were subject to meta-analysis. Results from the Experimental Phase studies, which were used for ERA, indicated that the three GM hybrids were not different from conventional maize for early stand count, days-tosilking, days-to-anthesis, root lodging, stalk lodging, or final stand count. Statistically significant differences were observed for seedling vigor, ear height, plant height, grain moisture, and grain yield, particularly in the IR hybrids; however, none of these phenotypic differences are expected to contribute to a biological or ecological change that would result in an increased pest potential or ecological risk when cultivating these GM hybrids. Overall, results from the Experimental Phase studies are consistent with those from other world regions, confirming that there are no additional risks compared to conventional maize. Results from Pilot Phase studies indicated that, compared to conventional maize hybrids, no differences were detected for the agronomic and phenotypic characteristics measured on the three GM maize hybrids, with the exception of grain moisture and grain yield in the IR hybrids. Since MON-89Ø34- 3 9 MON-88Ø17-3 and MON-89Ø34-3 9 MONØØ6Ø3- 6 confer resistance to target insect pests, they are an alternative for farmers in Mexico to protect the crop from insect damage. Additionally, the herbicide tolerance conferred by all three GM hybrids enables more cost-effective weed management
The Tumor Suppressor Gene Brca1 Is Required for Embryonic Cellular Proliferation in the Mouse
AbstractMutations of the BRCA1 gene in humans are associated with predisposition to breast and ovarian cancers. We show here that Brca1+/− mice are normal and fertile and lack tumors by age eleven months. Homozygous Brca15-6 mutant mice die before day 7.5 of embryogenesis. Mutant embryos are poorly developed, with no evidence of mesoderm formation. The extraembryonic region is abnormal, but aggregation with wild-type tetraploid embryos does not rescue the lethality. In vivo, mutant embryos do not exhibit increased apoptosis but show reduced cell proliferation accompanied by decreased expression of cyclin E and mdm-2, a regulator of p53 activity. The expression of cyclin-dependent kinase inhibitor p21 is dramatically increased in the mutant embryos. Buttressing these in vivo observations is the fact that mutant blastocyst growth is grossly impaired in vitro. Thus, the death of Brca15-6 mutant embryos prior to gastrulation may be due to a failure of the proliferative burst required for the development of the different germ layers
Endothelial Jag1-RBPJ signalling promotes inflammatory leucocyte recruitment and atherosclerosis
Aim
To determine the role of NOTCH during the arterial injury response and the subsequent chronic arterial-wall inflammation underlying atherosclerosis.
Methods and results
We have generated a mouse model of endothelial-specific (Cdh5-driven) depletion of the Notch effector recombination signal binding protein for immunoglobulin kappa J region (RBPJ) [(ApoE); homozygous RBPJk conditional mice (RBPJ); Cadherin 5-Cre, tamoxifen inducible driver mice (Cdh5-Cre)]. Endothelial-specific deletion of RBPJ or systemic deletion of Notch1 in athero-susceptible ApoE mice fed a high-cholesterol diet for 6 weeks resulted in reduced atherosclerosis in the aortic arch and sinus. Intravital microscopy revealed decreased leucocyte rolling on the endothelium of ApoE; RBPJ; Cdh5-Cre mice, correlating with a lowered content of leucocytes and macrophages in the vascular wall. Transcriptome analysis revealed down-regulation of proinflammatory and endothelial activation pathways in atherosclerotic tissue of RBPJ-mutant mice. During normal Notch activation, Jagged1 signalling up-regulation in endothelial cells promotes nuclear translocation of the Notch1 intracellular domain (N1ICD) and its physical interaction with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This N1ICD–NF-κB interaction is required for reciprocal transactivation of target genes, including vascular cell adhesion molecule-1.
Conclusions Notch signalling pathway inactivation decreases leucocyte rolling, thereby preventing endothelial dysfunction and vascular inflammation. Attenuation of Notch signalling might provide a treatment strategy for atherosclerosis.This study was funded by grants SAF2013-45543R, RD12/0042/0005 (RIC) and RD12/0019/0003 (TERCEL) from the Spanish Ministry of Economy and Competitiveness (MINECO) to J.L.dlP, RD12/0042/0028 (RIC) to V.A. and RD12/0042/0053 (RIC) and SAF2012-40127 to J.M.G. M.N. held a Sara Borrell post-doctoral contract (CD09/00452) and D.M. holds a post-doctoral contract associated with grant RD12/0042/0005, both awarded by The Instituto de Salud Carlos III; B.M.P. holds a Juan de la Cierva post-doctoral contract (JCI-2010-06343). The CNIC is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the Pro CNIC Foundation, and is a ‘Severo Ochoa’ Center of Excellence (MINECO award SEV-2015-0505).This is the author accepted manuscript. The final version is available from Oxford University Press via http://dx.doi.org/10.1093/cvr/cvw19
Transportability of non-target arthropod field data for the use in environmental risk assessment of genetically modified maize in Northern Mexico
In country, non-target arthropod (NTA) field evaluations are required to comply with the regulatory process for cultivation of genetically modified (GM) maize in Mexico. Two sets of field trials, Experimental Phase and Pilot Phase, were conducted to identify any potential harm of insect-protected and glyphosate-tolerant maize (MON89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6) and glyphosatetolerant maize (MON-ØØ6Ø3-6) to local NTAs compared to conventional maize. NTA abundance data were collected at 32 sites, providing high geographic and environmental diversity within maize production areas from four ecological regions (ecoregions) in northern Mexico. The most abundant herbivorous taxa collected included field crickets, corn flea beetles, rootworm beetles, cornsilk flies, aphids, leafhoppers, plant bugs and thrips while the most abundant beneficial taxa captured were soil mites, spiders, predatory ground beetles, rove beetles, springtails (Collembola), predatory earwigs, ladybird beetles, syrphid flies, tachinid flies, minute pirate bugs, parasitic wasps and lacewings. Across the taxa analysed, no statistically significant differences in abundance were detected between GM maize and the conventional maize control for 69 of the 74 comparisons (93.2%) indicating thatthe single or stacked insect-protected and herbicide-tolerant
GM traits generally exert no marked adverse effects on the arthropod populations compared with conventional maize. The distribution of taxa observed in this study provides evidence that irrespective of variations in overall biodiversity of a given ecoregion, important herbivore, predatory and parasitic arthropod taxa within the commercial maize agroecosystem are highly similar indicating that relevant data generated in one ecoregion can be transportable for the risk assessment of the same or similar GM crop in another ecoregion
iPSC-Based Modeling of Variable Clinical Presentation in Hypertrophic Cardiomyopathy.
BACKGROUND
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and a frequent cause of heart failure and sudden cardiac death. Our understanding of the genetic bases and pathogenic mechanisms underlying HCM has improved significantly in the recent past, but the combined effect of various pathogenic gene variants and the influence of genetic modifiers in disease manifestation are very poorly understood. Here, we set out to investigate genotype-phenotype relationships in 2 siblings with an extensive family history of HCM, both carrying a pathogenic truncating variant in the MYBPC3 gene (p.Lys600Asnfs*2), but who exhibited highly divergent clinical manifestations.
METHODS
We used a combination of induced pluripotent stem cell (iPSC)-based disease modeling and CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9)-mediated genome editing to generate patient-specific cardiomyocytes (iPSC-CMs) and isogenic controls lacking the pathogenic MYBPC3 variant.
RESULTS
Mutant iPSC-CMs developed impaired mitochondrial bioenergetics, which was dependent on the presence of the mutation. Moreover, we could detect altered excitation-contraction coupling in iPSC-CMs from the severely affected individual. The pathogenic MYBPC3 variant was found to be necessary, but not sufficient, to induce iPSC-CM hyperexcitability, suggesting the presence of additional genetic modifiers. Whole-exome sequencing of the mutant carriers identified a variant of unknown significance in the MYH7 gene (p.Ile1927Phe) uniquely present in the individual with severe HCM. We finally assessed the pathogenicity of this variant of unknown significance by functionally evaluating iPSC-CMs after editing the variant.
CONCLUSIONS
Our results indicate that the p.Ile1927Phe variant of unknown significance in MYH7 can be considered as a modifier of HCM expressivity when found in combination with truncating variants in MYBPC3. Overall, our studies show that iPSC-based modeling of clinically discordant subjects provides a unique platform to functionally assess the effect of genetic modifiers.The funding for this research was provided by the Spanish Ministry of Science and Innovation-MCIN (grants PID2021-123925OB-I00, PID2019-104776RB-I00, CB06/01/1056, and CB16/11/00399 financed by MCIN/AEI/10.13039/501100011033), AGAUR (2021-SGR-974), Fundació La Marató de TV3 (201534-30), Fundación BBVA (BIO14_298), Fundació Obra Social la Caixa, and CERCA Program/ Generalitat de Catalunya. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the MCIN, and the Pro CNIC Foundation. I. Lazis was partially supported by a predoctoral fellowship from MCIN (PRE2019-087901).S
Del color de los ojos al interior del genoma. Nuevas tecnologías aplicadas a la educación: una experiencia en la enseñanza de la Genética
Depto. de Genética, Fisiología y MicrobiologíaFac. de Ciencias BiológicasFALSEsubmitte
- …