2,199 research outputs found

    Generalized energy conditions in Extended Theories of Gravity

    Full text link
    Theories of physics can be considered viable if the initial value problem and the energy conditions are formulated self-consistently. The former allow a uniquely determined dynamical evolution of the system, and the latter guarantee that causality is preserved and that "plausible" physical sources have been considered. In this work, we consider the further degrees of freedom related to curvature invariants and scalar fields in Extended Theories of Gravity (ETG). These new degrees of freedom can be recast as effective perfect fluids that carry different meanings with respect to the standard matter fluids generally adopted as sources of the field equations. It is thus somewhat misleading to apply the standard general relativistic energy conditions to this effective energy-momentum, as the latter contains the matter content and a geometrical quantity, which arises from the ETG considered. Here, we explore this subtlety, extending on previous work, in particular, to cases with the contracted Bianchi identities with diffeomorphism invariance and to cases with generalized explicit curvature-matter couplings, which imply the non-conservation of the energy-momentum tensor. Furthermore, we apply the analysis to specific ETGs, such as scalar-tensor gravity, f(R)f(R) gravity and modified Gauss-Bonnet gravity. Interesting results appear such as matter that may exhibit unusual thermodynamical features, for instance, and gravity that retains its attractive character in the presence of negative pressures; or alternatively, we verify that repulsive gravity may occur for standard matter.Comment: 12 pages, version accepted for publication in Phys.Rev.

    Energy conditions in modified gravity

    Get PDF
    We consider generalized energy conditions in modified theories of gravity by taking into account the further degrees of freedom related to scalar fields and curvature invariants. The latter are usually recast as generalized {\it geometrical fluids} that have different meanings with respect to the standard matter fluids generally adopted as sources of the field equations. More specifically, in modified gravity the curvature terms are grouped in a tensor HabH^{ab} and a coupling g(Ψi)g(\Psi^i) that can be reorganized in effective Einstein field equations, as corrections to the energy-momentum tensor of matter. The formal validity of such inequalities does not assure some basic requirements such as the attractive nature of gravity, so that the energy conditions have to be considered in a wider sense.Comment: 4 pages. V2: 5 pages; version to appear in Physics Letters B. V3: typo in Eq. (4) correcte

    La Radiació gravitatòria

    Get PDF

    Newtonian limits of warp drive spacetimes

    Full text link
    We find a class of warp drive spacetimes possessing Newtonian limits, which we then determine. The same method is used to compute Newtonian limits of the Schwarzschild solution and spatially flat Friedmann-Robertson-Walker cosmological models.Comment: 9 pages; v2: major changes; v3: misprints correcte

    Gravitational induced particle production through a nonminimal curvature-matter coupling

    Full text link
    We consider the possibility of a gravitationally induced particle production through the mechanism of a nonminimal curvature-matter coupling. An interesting feature of this gravitational theory is that the divergence of the energy-momentum tensor is nonzero. As a first step in our study we reformulate the model in terms of an equivalent scalar-tensor theory, with two arbitrary potentials. By using the formalism of open thermodynamic systems, we interpret the energy balance equations in this gravitational theory from a thermodynamic point of view, as describing irreversible matter creation processes. The particle number creation rates, the creation pressure, and the entropy production rates are explicitly obtained as functions of the scalar field and its potentials, as well as of the matter Lagrangian. The temperature evolution laws of the newly created particles are also obtained. The cosmological implications of the model are briefly investigated, and it is shown that the late-time cosmic acceleration may be due to particle creation processes. Furthermore, it is also shown that due to the curvature--matter coupling, during the cosmological evolution a large amount of comoving entropy is also produced.Comment: 15 pages; accepted for publication in the European Physical Journal

    Cosmological solutions in generalized hybrid metric-Palatini gravity

    Full text link
    We construct exact solutions representing a Friedmann-Lema\^itre-Robsertson-Walker (FLRW) universe in a generalized hybrid metric-Palatini theory. By writing the gravitational action in a scalar-tensor representation, the new solutions are obtained by either making an ansatz on the scale factor or on the effective potential. Among other relevant results, we show that it is possible to obtain exponentially expanding solutions for flat universes even when the cosmology is not purely vacuum. We then derive the classes of actions for the original theory which generate these solutions.Comment: 14 pages, 17 figure
    • …
    corecore