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We consider generalized energy conditions in modified theories of gravity by taking into account the
further degrees of freedom related to scalar fields and curvature invariants. The latter are usually recast
as generalized geometrical fluids that have different meanings with respect to the standard matter fluids
generally adopted as sources of the field equations. More specifically, in modified gravity the curvature
terms are grouped in a tensor Hab and a coupling g(Ψ i) that can be reorganized in effective Einstein
field equations, as corrections to the energy–momentum tensor of matter. The formal validity of such
inequalities does not assure some basic requirements such as the attractive nature of gravity, so that the
energy conditions have to be considered in a wider sense.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP .3
1. Introduction

In General Relativity (GR), the Einstein field equations, Gab =
8πGTab , relate the Einstein tensor Gab ≡ Rab − 1

2 gab R , to the
energy–momentum tensor of the matter fields, Tab , where Rab is
the Ricci tensor, which is defined as the contraction of the Rie-
mann curvature tensor Rc

acb = Rab , and R = Ra
a is the curvature

scalar. The Einstein equations govern the interplay between the
geometry of the spacetime and the matter content. There is a
clear separation between the left-hand side that corresponds to
the geometry, and the right-hand side where one finds the energy–
matter distribution. The underlying idea is that the matter–energy
distribution tells us how the spacetime is curved and, hence, how
gravity acts. Therefore, it follows from the equations, that any con-
ditions that we impose on Tab immediately translate into corre-
sponding conditions on the Einstein tensor Gab [1]. In this sense,
the causal and geodesic structures of space–time are determined
by the matter–energy distribution. In this context, the energy con-
ditions guarantee that the causality principle is respected and suit-
able physical sources have to be considered [1,2].

The definition of the energy conditions entails an arbitrary flow
which represents a generic observer or a reference frame. In gen-
eral, we consider a congruence of timelike curves whose tangent
4-vector W a represents the velocity vector of a family of observers.

* Corresponding author.
E-mail addresses: capozzie@na.infn.it (S. Capozziello), flobo@cii.fc.ul.pt

(F.S.N. Lobo), jpmimoso@cii.fc.ul.pt (J.P. Mimoso).
http://dx.doi.org/10.1016/j.physletb.2014.01.066
0370-2693 © 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license.
Alternatively, we may consider a field of null vectors, ka , which has
the advantage in simplifying Gabkakb = Rabkakb , since gabkakb = 0
by assumption. Thus, the energy conditions emerge directly from
the geodesic structure of the space–time. More specifically, con-
sider the Raychaudhuri equation, given by [3]

θ̇ + θ2

3
+ 2

(
σ 2 − ω2) − Ẇ a;a = −Rab W a W b, (1)

where σab is the shear tensor, θ is the expansion scalar and ωab is
the vorticity tensor. It is important to emphasize that Eq. (1) car-
ries only a geometrical meaning, as the quantities in it are directly
derived from the Ricci identities. It is only when we choose a par-
ticular theory that we establish a relation between Rab W a W b in
Eq. (1), and the energy–momentum tensor describing matter fields
[1,2]. One may also consider a null congruence ka and a vanish-
ing vorticity ωab = 0, which means that, in GR, it is possible to
associate the null energy condition with the focusing (attracting)
characteristic of the spacetime geometry.

In this work, we tackle the problem of the energy conditions
in modified gravity. This issue is extremely delicate since a stan-
dard approach is to consider the gravitational field equations as
effective Einstein equations. More specifically, the further degrees
of freedom carried by these theories [4–6] can be recast as gen-
eralized geometrical fluids that have different meanings with re-
spect to the standard matter fluids generally adopted as sources of
the field equations [7]. While standard fluids generally obey stan-
dard equations of states, these “fictitious” fluids can be related to
Funded by SCOAP3.
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scalar fields or further gravitational degrees of freedom, as in f (R)

gravity [16,17]. In these cases, the physical properties may be ill-
defined and the consequences can be dramatic, since the causal
and geodesic structures of the theory could present serious short-
comings as well as the energy–momentum tensor could not be
consistent with the Bianchi identities and the conservation laws.
Thus, we add a cautionary note of the results obtained in the liter-
ature [8]. Finally, we have to mention other important results for
energy conditions in alternative gravity. For example, in [9], energy
conditions in f (R) gravity and Brans–Dicke theories are discussed.
In [10], the non-attractive character of gravity in f (R) theories is
considered while energy conditions in the Jordan frame are taken
into account in [11]. In this work, we adopt the (− + ++) signa-
ture and c = 1.

2. Energy conditions in modified theories of gravity

In the context of modified theories of gravity, at least for a large
class of interesting cases, the generalized field equations can be
cast in the following form

g
(
Ψ i)(Gab + Hab) = 8πGTab, (2)

where Hab is an additional geometrical term with regard to GR
that encapsulates the geometrical modifications introduced by the
modified theory, and g(Ψ i) is a factor that modifies the coupling
with the matter fields in T ab , where Ψ i generically represents ei-
ther curvature invariants or other gravitational fields contributing
to the dynamics. GR is recovered for Hab = 0 and g(Ψ i) = 1.

Taking into account the diffeomorphism invariance of the mat-
ter action, the covariant conservation of the energy–momentum
tensor, ∇a T ab = 0, is obtained. Thus, from the contracted Bianchi
identities, we derive the following conservation law

∇b Hab = −8πG

g2
T ab∇b g. (3)

The fact that Hab is a geometrical quantity, in the sense that it can
be given by geometrical invariants or scalar fields different from
ordinary matter fields, implies that the imposition of a specific en-
ergy condition on T ab carries an implication for the combination
of Gab with Hab and not just for the Einstein tensor. So we can-
not obtain a simple geometrical implication, as in GR, from it any
more. For instance, if we assume that the strong energy condition,
Tab W a W b � 1

2 T W a Wa holds, it would mean, on the one hand, in
GR that Rab W a W b � 0 and, on the other hand, given Eq. (1), that
the geodesics are focusing, and hence that gravity possesses an at-
tractive character. This is one of the assumptions of the singularity
theorems of Hawking and Penrose [1]. However in the modified
gravity context under consideration, this condition just states that

g
(
Ψ i)(Rab + Hab − 1

2
gab H

)
W a Wa � 0, (4)

which does not necessarily imply Rab W a W b � 0 and hence we
cannot straightforwardly conclude that the satisfaction of the
strong energy condition (SEC) is synonymous of the attractive na-
ture of gravity in the particular modified theory of gravity under
consideration.

The term Hab is usually treated, in the literature, as a correction
to the energy–momentum tensor, so that the meaning which is at-
tributed to the energy conditions is the satisfaction of a specific
inequality using the combined quantity T ab

eff = T ab/g − Hab . It is
thus misleading to associate this effective energy–momentum ten-
sor to the energy conditions, since they do not emerge only from
T ab but from the geometrical quantity Hab , which is considered as
an additional energy–momentum tensor.
However, if the modified theory of gravity under considera-
tion allows an equivalent description upon an appropriate con-
formal transformation, it then becomes justified to associate the
transformed Hab to the redefined T ab in the conformally trans-
formed Einstein frame. In fact, conformal transformations play an
extremely relevant role in the discussion of the energy conditions.
In particular, they allow to emphasize the further degrees of free-
dom coming from modified gravities under the form of curvature
invariants and scalar fields. Specifically, several generalized theo-
ries of gravity can be redefined as GR plus a number of appropriate
fields coupled to matter by means of a conformal transformation
in the so-called Einstein frame. This is, for instance, the case for
scalar-tensor gravity theories, for f (R) gravity, etc., [7].

Indeed, in the scalar-tensor case, although in the Jordan frame
one has a separation between geometrical terms and standard
matter terms that can be cast as in (2), where Hab involves a mix-
ture of both the scalar and tensor gravitational fields, i.e., of ϕ and
Rab, R , it happens that upon a suitable conformal transformation
we are able to cast the field equations as G̃ab = 8πGT̃ eff

ab , where

T̃ eff
ab = T̃ M

ab + T̃ ϕ
ab . It thus makes sense to consider T̃ eff

ab as an ef-

fective energy–momentum tensor, where T̃ M
ab is the transformed

energy–momentum of matter, and T̃ ϕ
ab is an energy–momentum

tensor for the redefined scalar field ϕ which is coupled to mat-
ter. Then one finds results where one draws conclusions about the
properties of G̃ab such whether it focuses geodesics directly from
those conditions holding on T̃ eff

ab . This ignores the fact that Hab
originally possesses a geometrical character, and thus the conclu-
sions may be too hasty if not supported by the physical analysis of
the sources.

If we assume that in this frame the effective energy–momentum
tensor T̃ eff

ab satisfies some energy condition, for instance, the null

energy condition (NEC), this implies that G̃ab has to satisfy such a
condition. Thus, it is possible to write the Raychaudhuri equation
as

dθ̃

dv
= −

[
θ̃2

3
+ 2σ̃ 2 + R̃abk̃ak̃b

]
, (5)

which enables us to conclude on the attractive/repulsive charac-
ter of the given theory of gravity in the Einstein frame. Reversing
the conformal transformation, we can assess, in principle, what
happens in the original frame, namely, the Jordan frame. This oper-
ation requires to know how the kinematical quantities, present in
Eq. (5), transform under a conformal transformation. This means
that if gab → g̃ab = Ω2 gab and W a → W̃ a = Ω−1W a , we have
∇̃a W̃b = Ω∇a Wb +Ωγ c

ab Wc +Wb∇aΩ , where γ c
ab = δc

a∂bΩ/Ω +
δc

b∂aΩ/Ω − gab∂
cΩ/Ω .

From this result, it follows that we can pass from the Einstein to
the Jordan frame by the following transformations θ̃ab = Ω(θab −
Ω̇hab), σ̃ab = Ωσab , ω̃ab = Ωωab , θ̃ = Ω−1(θ − 3Ω̇), respectively.

Thus, Eq. (5) can finally be written as dθ̃
dv = θ̇

Ω2 − θ

Ω2
Ω̇
Ω

− 3
Ω

(ln Ω).. .
The latter result shows that whereas, in the Einstein frame, the
NEC implies the attractive nature of gravity, a similar implication
does not necessarily follow in the Jordan frame. In fact, dθ̃/dv � 0
only implies that θ̇ � Ω̇

Ω
θ + 3Ω(ln Ω).. , and thus it depends on the

sign of the term on the right-hand side of the inequality. On the
other hand, we see that R̃abk̃ak̃b � 0 does not necessarily entail
Rabkakb � 0. What we do indeed obtain is(
Ω−2 Rab + 2∇a∇b lnΩ + 2∇a lnΩ∇b lnΩ

)
kakb � 0. (6)

This discussion emphasizes that if, for example, in one of the
conformally related frames, we have attractive gravity (due to the
NEC), in the other frame neither the NEC is simultaneously satis-
fied, nor, in case it is, this means that gravity will be straightfor-
wardly attractive. This fact could be extremely relevant in view of
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identifying a physical meaning of conformal transformations. The
debate could be fixed as soon as a set of conformally invariant
physical quantities is identified. However, some physical quanti-
ties, like mass, are not conformally invariant so some authors claim
that such transformations are just a mathematical tool to change
frames, while others argue that conformal transformations have a
true physical meaning [7,12]. As discussed in [13] for f (R) gravity,
the energy conditions could greatly aid in this debate. We refer the
reader to [14] for a discussion on the formulation of scalar-tensor
theories of gravity in the Einstein and the Jordan frames in a cos-
mological context.

3. Example of a modified theory of gravity: Scalar-tensor gravity

According to the above discussion, the possibility to formulate
the energy conditions for any modified gravity strictly depend on
the correct identification of the function g(Ψ i), related to the grav-
itational coupling, and the tensor Hab , which contains the further
degrees of freedom of the theory with respect to GR.

Consider scalar-tensor gravity [15] given by the action

S = 1

16π

∫ √−gd4x

[
φR − ω(φ)

φ
φ,aφ

,a + 2φλ(φ)

]
+ SM , (7)

where SM is the standard matter part, the gravitational coupling is
assumed variable and a self-interaction potential is present. Vary-
ing this action with respect to the metric gab and the scalar field
φ yields the field equations (2), with Hab given by

Hab = −ω(φ)

φ2

[
φ;aφ;b − 1

2
gabφ;cφ;c

]

− 1

φ

[
φ;ab − gabφ;c ;c] − λ(φ)gab, (8)

and g(Ψ i) = φ, which we shall assume positive, and

�φ + 2φ2λ′(φ) − 2φλ(φ)

2ω(φ) + 3

= 1

2ω(φ) + 3

[
8πGT − ω′(φ)φ;cφ;c], (9)

where T ≡ T c
c is the trace of the matter energy–momentum ten-

sor and G ≡ 2ω+4
2ω+3 is the gravitational constant normalized to the

Newton value. One also requires the conservation of the mat-
ter content ∇a Tab = 0, to preserve the equivalence principle. The
archetype Brans–Dicke theory is characterized by the restriction of
ω(φ) being a constant, and of λ = λ′ = 0.

The above considerations on the energy conditions apply
straightforwardly. In particular, Eq. (4) is easily recovered like the
other energy conditions. Since we assume φ > 0, we see that the
condition Rab W a W b � 0 yielding the focusing of the time-like
congruence, and hence attractive gravity, becomes

(
Tab − 1

2
gab T

)
W a W b � φ

(
Hab − 1

2
gab H

)
W a W b. (10)

We further notice that the satisfaction of the latter condition al-
lows for the focusing of the time-like paths even when a mild
violation of the energy condition occurs. This is an interesting re-
sult since matter may exhibit unusual thermodynamical features,
e.g. including negative pressures, and yet gravity remains attrac-
tive. Alternatively, we see that repulsive gravity may occur for
common matter, i.e., for matter that satisfies all the energy con-
ditions (see [19]).
Indeed, the inequality (4) may be expressed as

W a W b
[

8π

φ

(
Tab − ω + 1

2ω + 3
gab T

)
+ ω

φ2
∇aφ∇bφ + ∇a∇bφ

φ

− 1

2φ

ω′

2ω + 3
gab∇c∇cφ − gab

φλ′ + (ω + 1)λ

2ω + 3

]
� 0. (11)

If we consider a Friedmann–Lemaître–Robertson–Walker universe
(FLRW) we derive

8πG

φ

(ω + 3)ρ + 3ωp

2ω + 3
+ λ

3
+ ω

3

φ̇2

φ2
+ ω̇

2(2ω + 3)

φ̇

φ
+ H

φ̇

φ
� 0,

(12)

where the functions ω(φ) and λ(φ) clearly define whether gravity
is attractive or repulsive.

However, it is interesting to note that, in close analogy with
the decomposition of the energy–momentum tensor with respect
to the vector field W a [1,2], one may consider the following useful
geometrical quantities

ρ̃ = g H || = (g Hab)W a W b, 3p̃ = 3g H⊥ = (g Hab)h
ab, (13)

Π̃ab = g H 〈ab〉
⊥ =

(
hachbd − 1

3
habhcd

)
(g Hcd), (14)

q̃a = g Ha⊥ = W c(g Hcd)h
ad, (15)

where H || and H⊥ are scalars, Ha⊥ is a vector and H 〈ab〉
⊥ is a pro-

jected trace-free symmetric tensor.
The decomposition (13)–(15) of the tensor Hab into the paral-

lel and orthogonal components to the time-like vector flow W a is
given by

Hab = H ||W a W b + H⊥hab + 2H(a
⊥ W b) + H 〈ab〉

⊥

= 1

φ

[
ρ̃W a W b + p̃hab + 2q̃(a W b) + π̃ab]. (16)

Thus, the inequality (10) may be written as (ρ + 3p)/φ −
(H || + 3H⊥)� 0, where we have used the definitions

H || = −ω(φ)

2φ2

(
3φ̇2 − hcd∇cφ∇cφ

) − 1

φ
hcd∇c∇dφ + λ(φ), (17)

H⊥ = −ω(φ)

3φ2

(
φ̇2

2
− 1

2
hcd∇cφ∇cφ

)

− 1

2φ

(
W a W b∇c∇dφ − 1

3
hcd∇c∇dφ

)
− λ(φ). (18)

Thus, ω(φ) and λ(φ) define whether gravity is attractive or repul-
sive in the scalar-tensor cosmological models. On the other hand,
upon conformally transforming the theory into the Einstein frame
by gab → ḡab = (φ/φ∗)gab , the condition for gravity to be attractive
with the redefined Ricci tensor becomes

R̃ab W̃ a W̃ b = 4π

φ∗
(ρ̄ + 3p̄) + 8π

φ∗
[
ϕ̇2 − Ṽ (ϕ)

]
� 0, (19)

where ϕ = ∫ √
(2ω + 3)/2 d ln φ is the redefined scalar field,

V (ϕ) = λ(φ(ϕ))/φ(ϕ) is the rescaled potential, and ρ̄ = ρ/φ2,
p̄ = p/φ2. So, although the latter condition adopts the familiar
form found in GR models endowed with a combination of matter
and a scalar field, the role of the functions ω(φ) and λ(φ) under-
lies the result because the definitions of ϕ and V (ϕ) depend on
them. In addition, in the Einstein frame, the matter and the scalar
field are interacting with each other as revealed by the scalar field
equation
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ϕ̈ + θ̄ ϕ̇ = −∂V (ϕ)

∂ϕ
− ∂ρ̄(ϕ, ā)

∂ϕ
. (20)

Thus, the dependence of the self-interacting potential V (ϕ),
and the coupling ∂ϕρ̄ ∝ α(ϕ)a−3γ is important, where α =
(
√

2ω + 3)−1, when considering a perfect fluid with p̄ = (γ − 1)ρ̄ .
In a cosmological setting, the interplay of the intervening com-
ponents such that those which violate the SEC dominate imply
that gravity exhibits a transition from being attractive into be-
coming repulsive. This feature is relevant in view of dark en-
ergy.

4. Discussion and conclusions

In this Letter, we have discussed the formulation and the mean-
ing of the energy conditions in the context of modified theories of
gravity. The procedure consists in disentangling the further degrees
of freedom that emerges with respect to GR and in grouping them
as an effective energy–momentum tensor of the form T ab/g − Hab

where g(Ψ i) is the effective coupling and Hab the contribution due
to scalar fields and/or curvature invariants of the given modified
theory of gravity. Formally, the weak, null, dominant and strong
energy conditions can be rewritten as in GR. Despite of this anal-
ogy, their meaning can be totally different with respect to GR since
the causal structure, geodesic structure and gravitational interac-
tion may be altered.

A main role in this analysis is played by recasting the theory,
by conformal transformations, in the Einstein frame where mat-
ter and geometrical quantities can be formally dealt exactly such
as in GR. However, the energy conditions can assume a completely
different meaning going back to the Jordan frame and then they
could play a crucial role in identifying the physical frame as firstly
pointed out in [13]. On the other hand, geometrical implications
change in the two frames since optical scalars like σ , θ and ω can
give rise to the convergence or divergence of geodesics. This means
that the physical meaning of a given extended theory strictly de-
pends on the energy conditions and initial conditions (in relation
to the choice of the source [18]). From an observational point of
view, this fact could constitute a formidable tool to test the dark
components since deviations from standard GR could be put in ev-
idence.
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