33 research outputs found

    A Set of Lotus japonicus Gifu × Lotus burttii Recombinant Inbred Lines Facilitates Map-based Cloning and QTL Mapping

    Get PDF
    Model legumes such as Lotus japonicus have contributed significantly to the understanding of symbiotic nitrogen fixation. This insight is mainly a result of forward genetic screens followed by map-based cloning to identify causal alleles. The L. japonicus ecotype ‘Gifu’ was used as a common parent for inter-accession crosses to produce F2 mapping populations either with other L. japonicus ecotypes, MG-20 and Funakura, or with the related species L. filicaulis. These populations have all been used for genetic studies but segregation distortion, suppression of recombination, low polymorphism levels, and poor viability have also been observed. More recently, the diploid species L. burttii has been identified as a fertile crossing partner of L. japonicus. To assess its qualities in genetic linkage analysis and to enable quantitative trait locus (QTL) mapping for a wider range of traits in Lotus species, we have generated and genotyped a set of 163 Gifu × L. burttii recombinant inbred lines (RILs). By direct comparisons of RIL and F2 population data, we show that L. burttii is a valid alternative to MG-20 as a Gifu mapping partner. In addition, we demonstrate the utility of the Gifu × L. burttii RILs in QTL mapping by identifying an Nfr1-linked QTL for Sinorhizobium fredii nodulation

    Sinorhizobium fredii HH103 RirA is required for oxidative stress resistance and efficient symbiosis with Soybean

    Get PDF
    Members of Rhizobiaceae contain a homologue of the iron-responsive regulatory protein RirA. In different bacteria, RirA acts as a repressor of iron uptake systems under iron-replete conditions and contributes to ameliorate cell damage during oxidative stress. In Rhizobium leguminosarum and Sinorhizobium meliloti, mutations in rirA do not impair symbiotic nitrogen fixation. In this study, a rirA mutant of broad host range S. fredii HH103 has been constructed (SVQ780) and its free-living and symbiotic phenotypes evaluated. No production of siderophores could be detected in either the wild-type or SVQ780. The rirA mutant exhibited a growth advantage under iron-deficient conditions and hypersensitivity to hydrogen peroxide in iron-rich medium. Transcription of rirA in HH103 is subject to autoregulation and inactivation of the gene upregulates fbpA, a gene putatively involved in iron transport. The S. fredii rirA mutant was able to nodulate soybean plants, but symbiotic nitrogen fixation was impaired. Nodules induced by the mutant were poorly infected compared to those induced by the wild-type. Genetic complementation reversed the mutant’s hypersensitivity to H2O2, expression of fbpA, and symbiotic deficiency in soybean plants. This is the first report that demonstrates a role for RirA in the Rhizobium-legume symbiosis.Andalucian Government Grant No. P11-CVI-7500Spanish Government Grant Nos. BIO2013-42801-P and BIO2016-78409-REuropean Regional Development Funds (ERDF)VPPI (V Plan Propio de Investigación) of University of Seville

    Sinorhizobium fredii Strains HH103 and NGR234 Form Nitrogen Fixing Nodules With Diverse Wild Soybeans (Glycine soja) From Central China but Are Ineffective on Northern China Accessions

    Get PDF
    Sinorhizobium fredii indigenous populations are prevalent in provinces of Central China whereas Bradyrhizobium species (Bradyrhizobium japonicum, B. diazoefficiens, B. elkanii, and others) are more abundant in northern and southern provinces. The symbiotic properties of different soybean rhizobia have been investigated with 40 different wild soybean (Glycine soja) accessions from China, Japan, Russia, and South Korea. Bradyrhizobial strains nodulated all the wild soybeans tested, albeit efficiency of nitrogen fixation varied considerably among accessions. The symbiotic capacity of S. fredii HH103 with wild soybeans from Central China was clearly better than with the accessions found elsewhere. S. fredii NGR234, the rhizobial strain showing the broadest host range ever described, also formed nitrogen-fixing nodules with different G. soja accessions from Central China. To our knowledge, this is the first report describing an effective symbiosis between S. fredii NGR234 and G. soja. Mobilization of the S. fredii HH103 symbiotic plasmid to a NGR234 pSym-cured derivative (strain NGR234C) yielded transconjugants that formed ineffective nodules with G. max cv. Williams 82 and G. soja accession CH4. By contrast, transfer of the symbiotic plasmid pNGR234a to a pSym-cured derivative of S. fredii USDA193 generated transconjugants that effectively nodulated G. soja accession CH4 but failed to nodulate with G. max cv. Williams 82. These results indicate that intra-specific transference of the S. fredii symbiotic plasmids generates new strains with unpredictable symbiotic properties, probably due to the occurrence of new combinations of symbiotic signals.España, Junta de Andalucía P11-CVI-7500España Ministerio de Economía y Competitividad BIO2016-78409-

    A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis

    Get PDF
    Sinorhizobium fredii HH103 is a rhizobial soybean symbiont that exhibits an extremely broad host-range. Flavonoids exuded by legume roots induce the expression of rhizobial symbiotic genes and activate the bacterial protein NodD, which binds to regulatory DNA sequences called nod boxes (NB). NB drive the expression of genes involved in the production of molecular signals (Nod factors) as well as the transcription of ttsI, whose encoded product binds to tts boxes (TB), inducing the secretion of proteins (effectors) through the type 3 secretion system (T3SS). In this work, a S. fredii HH103 global gene expression analysis in the presence of the flavonoid genistein was carried out, revealing a complex regulatory network. Three groups of genes differentially expressed were identified: i) genes controlled by NB, ii) genes regulated by TB, and iii) genes not preceded by a NB or a TB. Interestingly, we have found differentially expressed genes not previously studied in rhizobia, being some of them not related to Nod factors or the T3SS. Future characterization of these putative symbiotic-related genes could shed light on the understanding of the complex molecular dialogue established between rhizobia and legumes.España, Ministerio de Economía y Competitividad BIO2011-30229-C01España, Ministerio de Economía y Competitividad AGL2012-38831Junta de Andalucía, P11-CVI-7050Junta de Andalucía P11-CVI-750

    Exopolysaccharide Production by Sinorhizobium fredii HH103 Is Repressed by Genistein in a NodD1-Dependent Manner

    Get PDF
    In the rhizobia-legume symbiotic interaction, bacterial surface polysaccharides, such as exopolysaccharide (EPS), lipopolysaccharide (LPS), K-antigen polysaccharide (KPS) or cyclic glucans (CG), appear to play crucial roles either acting as signals required for the progression of the interaction and/or preventing host defence mechanisms. The symbiotic significance of each of these polysaccharides varies depending on the specific rhizobialegume couple. In this work we show that the production of exopolysaccharide by Sinorhizobium fredii HH103, but not by other S. fredii strains such as USDA257 or NGR234, is repressed by nod gene inducing flavonoids such as genistein and that this repression is dependent on the presence of a functional NodD1 protein. In agreement with the importance of EPS for bacterial biofilms, this reduced EPS production upon treatment with flavonoids correlates with decreased biofilm formation ability. By using quantitative RT-PCR analysis we show that expression of the exoY2 and exoK genes is repressed in late stationary cultures of S. fredii HH103 upon treatment with genistein. Results presented in this work show that in S. fredii HH103 EPS production is regulated just in the opposite way than other bacterial signals such as Nod factors and type 3 secreted effectors: it is repressed by flavonoids and NodD1 and enhanced by the nod repressor NolR. These results are in agreement with our previous observations showing that lack of EPS production by S. fredii HH103 is not only non-detrimental but even beneficial for symbiosis with soybeanMinisterio de Ciencia e Investigación BIO2011-30229-C02-01Junta de Andalucía P11-CVI-750

    Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean

    Get PDF
    It has been postulated that nodulation outer proteins (Nops) avoid effective nodulation of Sinorhizobium fredii USDA257 to nodulate with American soybeans. S. fredii HH103 naturally nodulates with both Asiatic (non-commercial) and American (commercial) soybeans. Inactivation of the S. fredii HH103 gene rhcJ, which belongs to the tts (type III secretion) cluster, abolished Nop secretion and decreased its symbiotic capacity with the two varieties of soybeans. S. fredii strains HH103 and USDA257, that only nodulates with Asian soybeans, showed different SDS-PAGE Nop profiles, indicating that these strains secrete different sets of Nops. In coinoculation experiments, the presence of strain USDA257 provoked a clear reduction of the nodulation ability of strain HH103 with the American soybean cultivar Williams. These results suggest that S. fredii Nops can act as either detrimental or beneficial symbiotic factors in a strain-cultivar-dependent manner. Differences in the flavonoid-mediated expression of rhcJ with respect to nodA were also detected. In addition, one of the Nops secreted by strain HH103 was identified as NopA. [Int Microbiol 2006; 9(2):125-133

    Structure of the unusual Sinorhizobium fredii HH103 lipopolysaccharide and its role in symbiosis

    Get PDF
    Rhizobia are soil bacteria that form important symbiotic associations with legumes, and rhizobial surface polysaccharides, such as K-antigen polysaccharide (KPS) and lipopolysaccharide (LPS), might be important for symbiosis. Previously, we obtained a mutant of Sinorhizobium fredii HH103, rkpA, that does not produce KPS, a homopolysaccharide of a pseudaminic acid derivative, but whose LPS electrophoretic profile was indistinguishable from that of the WT strain. We also previously demonstrated that the HH103 rkpLMNOPQ operon is responsible for 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-L-glyc-ero-L-manno-nonulosonic acid [Pse5NAc7(3OHBu)] production and is involved in HH103 KPS and LPS biosynthesis and that an HH103 rkpM mutant cannot produce KPS and displays an altered LPS structure. Here, we analyzed the LPS structure of HH103 rkpA, focusing on the carbohydrate portion, and found that it contains a highly heterogeneous lipid A and a peculiar core oligosaccharide composed of an unusually high number of hexuronic acids containing b-configured Pse5NAc7(3OHBu). This pseudaminic acid derivative, in its a-configuration, was the only structural component of the S. fredii HH103 KPS and, to the best of our knowledge, has never been reported from any other rhizobial LPS. We also show that Pse5NAc7(3OHBu) is the complete or partial epitope for a mAb, NB6-228.22, that can recognize the HH103 LPS, but not those of most of the S. fredii strains tested here. We also show that the LPS from HH103 rkpM is identical to that of HH103 rkpA but devoid of any Pse5NAc7(3OHBu) residues. Notably, this rkpM mutant was severely impaired in symbiosis with its host, Macroptilium atropurpureum.Fil: Di Lorenzo, Flaviana. Università degli Studi di Napoli Federico II; ItaliaFil: Speciale, Immacolata. Università degli Studi di Napoli Federico II; ItaliaFil: Silipo, Alba. Università degli Studi di Napoli Federico II; ItaliaFil: Alías Villegas, Cynthia. Universidad de Sevilla; EspañaFil: Acosta Jurado, Sebastián. Universidad de Sevilla; EspañaFil: Rodríguez Carvajal, Miguel Ángel. Universidad de Sevilla; EspañaFil: Dardanelli, Marta Susana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Biotecnología Ambiental y Salud - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Biotecnología Ambiental y Salud; ArgentinaFil: Palmigiano, Angelo. Consiglio Nazionale delle Ricerche; ItaliaFil: Garozzo, Domenico. Consiglio Nazionale delle Ricerche; ItaliaFil: Ruiz Sainz, José Enrique. Universidad de Sevilla; EspañaFil: Molinaro, Antonio. University of Naples Federico II; ItaliaFil: Vinardell, José María. Universidad de Sevilla; Españ

    The Sinorhizobium fredii HH103 Lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules

    Get PDF
    In this work we have characterised the Sinorhizobium fredii HH103 greA lpsB lpsCDE genetic region and analysed for the first time the symbiotic performance of Sinorhizobium fredii lps mutants on soybean. The organization of the S. fredii HH103 greA, lpsB, and lpsCDE genes was equal to that of Sinorhizobium meliloti 1021. S. fredii HH103 greA, lpsB, and lpsE mutant derivatives produced altered LPS profiles that were characteristic of the gene mutated. In addition, S. fredii HH103 greA mutants showed a reduction in bacterial mobility and an increase of auto-agglutination in liquid cultures. RT-PCR and qPCR experiments demonstrated that the HH103 greA gene has a positive effect on the transcription of lpsB. Soybean plants inoculated with HH103 greA, lpsB or lpsE mutants formed numerous ineffective pseudonodules and showed severe symptoms of nitrogen starvation. However, HH103 greA and lps mutants were also able to induce the formation of a reduced number of soybean nodules of normal external morphology, allowing the possibility of studying the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis. The infected cells of these nodules showed signs of early termination of symbiosis and lytical clearance of bacteroids. These cells also had very thick walls and accumulation of phenolic-like compounds, pointing to induced defense reactions. Our results show the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis and their role in preventing host cell defense reactions. S. fredii HH103 lpsB mutants also showed reduced nodulation with Vigna unguiculata, although the symbiotic impairment was less pronounced than in soybean

    A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide

    Get PDF
    The pleiotropic phenotype of an auxotrophic purL mutant (SVQ295) of Sinorhizobium fredii HH103 has been investigated. SVQ295 forms colonies that are translucent, produce more slime and absorb less Congo red than those of wild-type strain HH103. SVQ295 did not grow in minimal medium unless the culture was supplemented with thiamin and adenine or with thiamin and AICA-riboside (5-aminoimidazole-4-carboxamide 1-b-D-ribofuranoside), an intermediate of purine biosynthesis. Bacterial cultures supplemented with AICA-riboside or adenine reached the same culture density, although the doubling time of SVQ295 cultures containing AICA-riboside was clearly longer. S. fredii SVQ295 induced pseudonodules on Glycine max and failed to nodulate six different legumes. On Glycyrrhiza uralensis, however, nodules showing nitrogenase activity and containing infected plant cells were formed. SVQ295 showed auto-agglutination when grown in liquid TY medium and its lipopolysaccharide (LPS) electrophoretic profile differed from that of its parental strain HH103-1. In addition, four monoclonal antibodies that recognize the LPS of S. fredii HH103 failed to recognize the LPS produced by SVQ295. In contrast, 1H-NMR spectra of K-antigen capsular polysaccharides (KPS) produced by SVQ295 and the wild-type strain HH103 were similar. Co-inoculation of soybean plants with SVQ295 and SVQ116 (a nodA mutant derivative of HH103) produced nitrogen-fixing nodules that were only occupied by SVQ116
    corecore