69 research outputs found

    Polarimetric Observations of 15 AGNs at High Frequencies

    Get PDF
    Original paper can be found at: http://www.astrosociety.org/pubs/cs/328.html--Copyright Astronomical Society of the PacificWe have obtained total and polarized intensity images of 15 AGNs with the VLBA at 7 mm at 17 epochs from 25/26 March 1998 to 14 April 2001. The VLBA observations are accompanied at many epochs by simultaneous mea- surements of polarization at 1.35/0.85 mm as well as less frequent simultaneous optical polarization measurements. We discuss the similarities and complexities of polarization behavior at different frequencies along with the VLBI properties

    Behaviour of the Blazar CTA 102 during two giant outbursts

    Get PDF
    Blazar CTA 102 underwent exceptional optical and high-energy outbursts in 2012 and 2016-2017. We analyze its behaviour during these events, focusing on polarimetry as a tool that allows us to trace changes in the physical conditions and geometric configuration of the emission source close to the central black hole. We also use Fermi gamma-ray data in conjunction with optical photometry in an effort to localize the origin of the outbursts.AST-1615796 - Boston Universit

    THE CONNECTION between the RADIO JET and the GAMMA-RAY EMISSION in the RADIO GALAXY 3C 120

    Get PDF
    © 2015. The American Astronomical Society. All rights reserved. We present the analysis of the radio jet evolution of the radio galaxy 3C 120 during a period of prolonged γ-ray activity detected by the Fermi satellite between 2012 December and 2014 October. We find a clear connection between the γ-ray and radio emission, such that every period of γ-ray activity is accompanied by the flaring of the millimeter very long baseline interferometry (VLBI) core and subsequent ejection of a new superluminal component. However, not all ejections of components are associated with γ-ray events detectable by Fermi. Clear γ-ray detections are obtained only when components are moving in a direction closer to our line of sight. This suggests that the observed γ-ray emission depends not only on the interaction of moving components with the millimeter VLBI core, but also on their orientation with respect to the observer. Timing of the γ-ray detections and ejection of superluminal components locate the γ-ray production to within ∼0.13 pc from the millimeter VLBI core, which was previously estimated to lie about 0.24 pc from the central black hole. This corresponds to about twice the estimated extension of the broad line region, limiting the external photon field and therefore suggesting synchrotron self Compton as the most probable mechanism for the production of the γ-ray emission. Alternatively, the interaction of components with the jet sheath can provide the necessary photon field to produced the observed γ-rays by Compton scattering.his research has been supported by the Spanish Ministry of Science and Innovation grants AYA2010-14844, and AYA2013-40825 P, and by the Regional Government of Andalucia (Spain) grant P09-FQM-4784. This research was partly supported by the Russian Foundation for Basic Research grant 13-02-12103 and by the Academy of Finland project 274477.Peer Reviewe

    Probing the innermost regions of AGN jets and their magnetic fields with radioastron. I. Imaging BL LACERTAE at 21 μm as resolution

    Get PDF
    We present the first polarimetric space very long baseline interferometry (VLBI) imaging observations at 22 GHz. BL Lacertae was observed in 2013 November 10 with the RadioAstron space VLBI mission, including a ground array of 15 radio telescopes. The instrumental polarization of the space radio telescope is found to be less than 9%, demonstrating the polarimetric imaging capabilities of RadioAstron at 22 GHz. Ground-space fringes were obtained up to a projected baseline distance of 7.9 Earth diameters in length, allowing us to image the jet in BL Lacertae with a maximum angular resolution of 21 μas, the highest achieved to date. We find evidence for emission upstream of the radio core, which may correspond to a recollimation shock at about 40 μas from the jet apex, in a pattern that includes other recollimation shocks at approximately 100 and 250 μas from the jet apex. Polarized emission is detected in two components within the innermost 0.5 mas from the core, as well as in some knots 3 mas downstream. Faraday rotation analysis, obtained from combining RadioAstron 22 GHz and ground-based 15 and 43 GHz images, shows a gradient in rotation measure and Faraday-corrected polarization vector as a function of position angle with respect to the core, suggesting that the jet in BL Lacertae is threaded by a helical magnetic field. The intrinsic de-boosted brightness temperature in the unresolved core exceeds K, suggesting, at the very least, departure from equipartition of energy between the magnetic field and radiating particles.This research has been supported by the Spanish Ministry of Economy and Competitiveness grant AYA2013-40825-P, by the Russian Foundation for Basic Research (projects 13-02-12103, 14-02-31789, and 15-02-00949), and St. Petersburg University research grant 6.38.335.2015. The research at Boston University (BU) was funded in part by NASA Fermi Guest Investigator grant NNX14AQ58G. Y.M. acknowledges support from the ERC Synergy Grant >BlackHoleCam-Imaging the Event Horizon of Black Holes> (Grant 610058). Part of this work was supported by the COST Action MP1104 >Polarization as a tool to study the Solar System and beyond.> The RadioAstron project is led by the Astro Space Center of the Lebedev Physical Institute of the Russian Academy of Sciences and the Lavochkin Scientific and Production Association under a contract with the Russian Federal Space Agency, in collaboration with partner organizations in Russia and other countries.Peer Reviewe

    Effect of Phosphorus and Strontium Additions on Formation Temperature and Nucleation Density of Primary Silicon in Al-19 Wt Pct Si Alloy and Their Effect on Eutectic Temperature

    Get PDF
    The influence of P and Sr additions on the formation temperature and nucleation density of primary silicon in Al-19 wt pct Si alloy has been determined, for small volumes of melt solidified at cooling rates _T of ~0.3 and 1 K/s. The proportion of ingot featuring primary silicon decreased progressively with increased Sr addition, which also markedly reduced the temperature for first formation of primary silicon and the number of primary silicon particles per unit volume �Nv: When combined with previously published results, the effects of amount of P addition and cooling rate on �Nv are in reasonable accord with �Nv� _T ¼ ðp=6fÞ1=2 109 [250 � 215 (wt pct P)0.17]�3, where �Nv is in mm�3, _T is in K/s, and f is volume fraction of primary silicon. Increased P addition reduces the eutectic temperature, while increased Sr appears to generate a minimum in eutectic temperature at about 100 ppmw Sr

    Extragalactic jets on subpc and large scales

    Full text link
    Jets can be probed in their innermost regions (d~0.1 pc) through the study of the relativistically-boosted emission of blazars. On the other extreme of spatial scales, the study of structure and dynamics of extragalactic relativistic jets received renewed impulse after the discovery, made by Chandra, of bright X-ray emission from regions at distances larger than hundreds of kpc from the central engine. At both scales it is thus possible to infer some of the basic parameters of the flow (speed, density, magnetic field intensity, power). After a brief review of the available observational evidence, I discuss how the comparison between the physical quantities independently derived at the two scales can be used to shed light on the global dynamics of the jet, from the innermost regions to the hundreds of kpc scale.Comment: Proceedings of the 5th Stromlo Symposium: Disks, Winds, and Jets - from Planets to Quasars. Accepted, to be published in Astrophysics & Space Scienc

    Extragalactic Relativistic Jets and Nuclear Regions in Galaxies

    Get PDF
    Past years have brought an increasingly wider recognition of the ubiquity of relativistic outflows (jets) in galactic nuclei, which has turned jets into an effective tool for investigating the physics of nuclear regions in galaxies. A brief summary is given here of recent results from studies of jets and nuclear regions in several active galaxies with prominent outflows.Comment: 5 pages; contribution to ESO Astrophysical Symposia, "Relativistic Astrophysics and Cosmology", eds. B. Aschenbach, V. Burwitz, G. Hasinger, B. Leibundgut (Springer: Heidelberg 2006

    Two flares with one shock: the interesting case of 3C 454.3

    Full text link
    The quasar 3C 454.3 is a blazar known for its rapid and violent outbursts seen across the electromagnetic spectrum. Using γ-ray, X-ray, multiband optical, and very-long-baseline interferometric data we investigate the nature of two such events that occurred in 2013 and 2014 accompanied by strong variations in optical polarization, including a ~230° electric vector position angle (EVPA) rotation. Our results suggest that a single disturbance was responsible for both flaring events. We interpret the disturbance as a shock propagating down the jet. Under this interpretation the 2013 flare originated most likely due to changes in the viewing angle caused by perhaps a bent or helical trajectory of the shock upstream of the radio core. The 2014 flare and optical polarization behavior are the result of the shock exiting the 43 GHz radio core, suggesting that shock crossings are one of the possible mechanisms for EVPA rotations.Accepted manuscrip

    New jet feature in the parsec-scale jet of the blazar OJ 287 connected to the 2017 teraelectronvolt flaring activity

    Get PDF
    Context. In February 2017 the blazar OJ 287, one of the best super-massive binary-black-hole-system candidates, was detected for the first time at very high energies (VHEs; E > 100 GeV) with the ground-based γ-ray observatory VERITAS. Aims. Very high energy γ rays are thought to be produced in the near vicinity of the central engine in active galactic nuclei. For this reason, and with the main goal of providing useful information for the characterization of the physical mechanisms connected with the observed teraelectronvolt flaring event, we investigate the parsec-scale source properties by means of high-resolution very long baseline interferometry observations. Methods. We use 86 GHz Global Millimeter-VLBI Array (GMVA) observations from 2015 to 2017 and combine them with additional multiwavelength radio observations at different frequencies from other monitoring programs. We investigate the source structure by modeling the brightness distribution with two-dimensional Gaussian components in the visibility plane. Results. In the GMVA epoch following the source VHE activity, we find a new jet feature (labeled K) at ∼0.2 mas from the core region and located in between two quasi-stationary components (labeled S1 and S2). Multiple periods of enhanced activity are detected at different radio frequencies before and during the VHE flaring state. Conclusions. Based on the findings of this work, we identify as a possible trigger for the VHE flaring emission during the early months of 2017 the passage of a new jet feature through a recollimation shock (represented by the model-fit component S1) in a region of the jet located at a de-projected distance of ∼10 pc from the radio core. © ESO 2022.This research has made use of data obtained with the Global Millimeter VLBI Array (GMVA), which consists of telescopes operated by the MPIfR, IRAM, Onsala, Metsahovi, Yebes and the VLBA. The Green Bank Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The data were correlated at the correlator of the MPIfR in Bonn, Germany. R. L., J. L. G., G. Y. Z., A. F., T. T., I. C., I. A. and A. A. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709), from the Spanish Ministerio de Economía y Competitividad, and Ministerio de Ciencia e Innovación (grants AYA2016-80889-P, PID2019-108995GB-C21, PID2019-107847RB-C44), the Consejería de Economía, Conocimiento, Empresas y Universidad of the Junta de Andalucía (grant P18-FR-1769), the Consejo Superior de Investigaciones Científicas (grant 2019AEP112). This study makes use of 43 GHz VLBA data from the VLBA-BU Blazar Monitoring Program (BEAM-ME and VLBA-BU-BLAZAR; http://www.bu.edu/blazars/VLBAproject.html), funded by NASA through the Fermi Guest Investigator Program. The research at Boston University was supported in part by NASA Fermi Guest Investigator program grant 80NSSC20K1567. The VLBA is an instrument of the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated by Associated Universities, Inc. The POLAMI observations were carried out at the IRAM 30m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). This research has made use of data from the MOJAVE database that is maintained by the MOJAVE team (Lister et al. 2018). This research has made use of data from the OVRO 40-m monitoring program (Richards et al. 2011), supported by private funding from the California Insitute of Technology and the Max Planck Institute for Radio Astronomy, and by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G and NSF grants AST-0808050 and AST- 1109911.Peer reviewe

    Multiwavelength behaviour of the blazar 3C 279: Decade-long study from γ -ray to radio

    Get PDF
    We report the results of decade-long (2008-2018) γ -ray to 1 GHz radio monitoring of the blazar 3C 279, including GASP/WEBT, Fermi and Swift data, as well as polarimetric and spectroscopic data. The X-ray and γ -ray light curves correlate well, with no delay ≳ 3 h, implying general cospatiality of the emission regions. The γ -ray-optical flux-flux relation changes with activity state, ranging from a linear to amore complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43 GHz Very Long Baseline Array images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain γ -ray variability on very short time-scales. The MgII emission line flux in the 'blue' and 'red' wings correlates with the optical synchrotron continuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. In the radio bands, we find progressive delays of the most prominent light-curve maxima with decreasing frequency, as expected from the frequency dependence of the τ= 1 surface of synchrotron self-absorption. The global maximum in the 86 GHz light curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at ∼5 GHz. These tendencies suggest different Doppler boosting of stratified radio-emitting zones in the jet. © 2020 The Author(s).We thank the referee for attentive reading and comments that helped to improve presentation of the manuscript. The data collected by the WEBT collaboration are stored in the WEBT archive at the Osservatorio Astrofisico di Torino -INAF (ht tp://www.oato.inaf.it/blazars/webt/); for questions regarding their availability, please contact the WEBT President Massimo Villata([email protected]).TheSt.Petersburg University team acknowledges support from Russian Science Foundation grant 17-12-01029. The research at BU was supported in part by National Science Foundation grant AST-1615796 and NASA Fermi Guest Investigator grants 80NSSC17K0649, 80NSSC19K1504, and 80NSSC19K1505. The PRISM camera at Lowell Observatory was developed by K. Janes et al. at BU and Lowell Observatory, with funding from the NSF, BU, and Lowell Observatory. The emission-line observations made use of the DCT at Lowell Observatory, supported by Discovery Communications, Inc., BU, the University of Maryland, the University of Toledo, and Northern Arizona University. The VLBA is an instrument of the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the US NSF, operated under cooperative agreement by Associated Universities, Inc. This research has used data from the UMRAO which was supported by the University of Michigan; research at this facility was supported by NASA under awards NNX09AU16G, NNX10AP16G, NNX11AO13G, and NNX13AP18G, and by the NSF under award AST-0607523. The Steward Observatory spectropolarimetric monitoring project was supported by NASA Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, NNX12AO93G, and NNX15AU81G. The Torino group acknowledges financial contribution from agreement ASI-INAF n.2017-14-H.0 and from contract PRIN-SKA-CTA-INAF 2016. I.A. acknowledges support by a Ramon y Cajal grant (RYC-2013-14511) of the 'Ministerio de Ciencia, Innovacion, y Universidades (MICIU)' of Spain and from MCIU through the 'Center of Excellence Severo Ochoa' award for the Instituto de Astrofisica de Andalucia-CSIC (SEV-20170709). Acquisition and reduction of the POLAMI and MAPCAT data were supported by MICIU through grant AYA2016-80889-P. The POLAMI observations were carried out at the IRAM 30-m Telescope, supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The MAPCAT observations were carried out at theGerman-Spanish Calar Alto Observatory, jointly operated by the Max-Plank-Institut fur Astronomie and the Instituto de Astrofisica de Andalucia-CSIC. The study is based partly on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC. The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G, and NSF grants AST-0808050 and AST-1109911. TH was supported by the Academy of Finland projects 317383 and 320085. AZT-24 observations were made within an agreement between Pulkovo, Rome and Teramo observatories. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The Abastumani team acknowledges financial support by the Shota Rustaveli National Science Foundation under contract FR/217950/16. r This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grants DN 081/2016, DN 18-13/2017, KP-06-H28/3 (2018), and KP-06-PN38/1 (2019), Bulgarian National Science Programme 'Young Scientists and Postdoctoral Students 2019', Bulgarian National Science Fund under grant DN18-10/2017 and National RI Roadmap Projects DO1-157/28.08.2018 and DO1-153/28.08.2018 of the Ministry of Education and Science of the Republic of Bulgaria. GD and OV gratefully acknowledge observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory via bilateral joint research project `Study of ICRF radio-sources and fast variable astronomical objects' (head -G. Damljanovic). This work was partly supported by the National Science Fund of the Ministry of Education and Science of Bulgaria under grant DN 08-20/2016, and by project RD-08-37/2019 of the University of Shumen. This work is a part of projects nos 176011, 176004, and 176021, supported by theMinistry of Education, Science and Technological Development of the Republic of Serbia. MGM acknowledges support through the Russian Government Program of Competitive Growth of Kazan Federal University. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the 'Unite des Communes vald 'otainesMont-Emilius'. The research at the OAVdA was partially funded by several `Research and Education' annual grants from Fondazione CRT. This article is partly based on observations made with the IAC80 and TCS telescopes operated by the Instituto de Astrofisica de Canarias in the Spanish Observatorio del Teide on the island of Tenerife. A part of the observations were carried out using theRATAN-600 scientific equipment (SAO of the Russian Academy of Sciences)
    corecore