2,299 research outputs found

    Central difference TVD and TVB schemes for time dependent and steady state problems

    Get PDF
    We use central differences to solve the time dependent Euler equations. The schemes are all advanced using a Runge-Kutta formula in time. Near shocks, a second difference is added as an artificial viscosity. This reduces the scheme to a first order upwind scheme at shocks. The switch that is used guarantees that the scheme is locally total variation diminishing (TVD). For steady state problems it is usually advantageous to relax this condition. Then small oscillations do not activate the switches and the convergence to a steady state is improved. To sharpen the shocks, different coefficients are needed for different equations and so a matrix valued dissipation is introduced and compared with the scalar viscosity. The connection between this artificial viscosity and flux limiters is shown. Any flux limiter can be used as the basis of a shock detector for an artificial viscosity. We compare the use of the van Leer, van Albada, mimmod, superbee, and the 'average' flux limiters for this central difference scheme. For time dependent problems, we need to use a small enough time step so that the CFL was less than one even though the scheme was linearly stable for larger time steps. Using a total variation bounded (TVB) Runge-Kutta scheme yields minor improvements in the accuracy

    Unsteady stator/rotor interaction

    Get PDF
    The major thrust of the computational analysis of turbomachinery to date has been the steady-state solution of isolated blades using mass-averaged inlet and exit conditions. Unsteady flows differ from the steady solution due to interaction of pressure waves and wakes between blade rows. To predict the actual complex flow conditions one must look at the time accurate solution of the entire turbomachine. Three quasi-three-dimensional Euler and thin layer Navier-Stokes equations are solved for unsteady turbomachinery flows

    An unconditionally stable Runge-Kutta method for unsteady flows

    Get PDF
    A quasi-three dimensional analysis was developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body fitted coordinate system. It accounts for the effects of rotation, radius change, and stream surface thickness. The Baldwin-Lomax eddy viscosity model is used for turbulent flows. The equations are integrated in time using a four stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing was employed to accelerate the solution of the time accurate computations. The scheme is described and accuracy analyses are given. Results are shown for a supersonic through-flow fan designed for NASA Lewis. The rotor:stator blade ratio was taken as 1:1. Results are also shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Here the blade ratio is 2:3. Implicit residual smoothing was used to increase the time step limit of the unsmoothed scheme by a factor of six with negligible differences in the unsteady results. It is felt that the implicitly smoothed Runge-Kutta scheme is easily competitive with implicit schemes for unsteady flows while retaining the simplicity of an explicit scheme

    An explicit Runge-Kutta method for unsteady rotor/stator interaction

    Get PDF
    A quasi-three-dimensional rotor/stator analysis has been developed for blade-to-blade flows in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body-fitted coordinate system. It accounts for the effects of rotation, radius change, and stream-surface thickness. The Baldwin-Lomax eddy-viscosity model is used for turbulent flows. The equations are integrated in time using a four-stage Runge-Kutta scheme with a constant timestep. Results are shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Euler and Navier-Stokes results are compared on the scaled single- and multi-passage machine. The method is relatively fast and the quasi-three-dimensional formulation is applicable to a wide range of turbomachinery geometries

    An unconditionally stable Runge-Kutta method for unsteady rotor-stator interaction

    Get PDF
    A quasi-three-dimensional analysis has been developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body-fitted coordinate system. It accounts for the effects of rotation, radius change, and stress-surface thickness. The Baldwin-Lomax eddy-viscosity model is used for turbulent flows. The equations are integrated in time using an explicit four-stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing is used to increase the stability limit of the time-accurate computations. The scheme is described, and stability and accuracy analyses are given

    International Law

    Get PDF

    Research into the feasibility of thin metal and oxide film capacitors

    Get PDF
    Feasibility of thin metal and oxide film capacitor

    Technical Change, Investment and Energy Intensity

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).This paper analyzes the role of different components of technical change on energy intensity by applying a Translog variable cost function setting to the new EU KLEMS dataset for 3 selected EU countries (Italy, Finland and Spain). The framework applied represents an accounting of technical change components, comprising autonomous as well as embodied and induced technical change. The inducement of embodied technical change is introduced by an equation for the physical capital stock that is a fixed factor in the short-run. The dataset on capital services and user costs of capital in EUKLEMS enables explaining capital accumulation depending on factor prices. The model can be used for explaining and tracing back the long-run impact of prices and technical change on energy intensity.This paper is based on the EU KLEMS database, which has been funded by the European Commission, Research Directorate General as part of the 6th Framework Programme, Priority 8, “Policy Support and Anticipating Scientific and Technological Needs” (project 502049)
    corecore