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Abstract

We use central differences to solve the time depen-

dent Euler equations. The schemes are all advanced

using a Runge-Kutta formula in time. Near shocks
a second difference is added as an artificial viscos-

ity. This reduces the scheme to a first order upwind

scheme at shocks. The switch that is used guaran-

tees that the scheme is locally TVD. For steady state

problems it is usually advantageous to relax this con-
dition. Then small oscillations do not activate the

switches and the convergence to a steady state is im-

proved. To sharpen the shocks different coefficients

are needed for different equations and so a matrix

valued dissipation is introduced and compared with

the scalar viscosity. The connection between this ar-
tificial viscosity and flux limiters is shown. Any flux
limiter can be used as the basis of a shock detector for

an artificial viscosity. We compare the use of the van

Leer. van Albada. minmod, superbee and the "'aver-

age" flux limiters for this central difference scheme.

For time dependent problems we need to use a small

enough time step so that the CFL was less than one

even though the scheme was linearly stable for larger

time steps. Using a TVB Runge-Kutta scheme yields

minor improvements in the accuracy.
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1 Basic Scheme

The basic elements of the scalar dissipation model

considered in this paper were first introduced by

Jameson. Schmidt, and Turkel [2] using an explicit

Runge-Kutta time integration scheme. The space dis-
cretization is based on central differences with an ad-

ditional artificial viscosity. In this section the basic

scheme is briefly reviewed.

Consider the Euler equations in the form

w, + h = 0. (1)

where W is the three-component vector of conserved

variables, and .f is the flux vector. The independent
variables are time t and Cartesian coordinate x. In a

cell-centered, finite-volume method. (1) is integrated

over an elemental volume in the discretized compu-

tational domain. Equation (1) can also be written

as

Wt+ AW, =0

where A is the flux Jacobian matrix defined by A =

o//ow.
To advance the scheme in time we use a multistage

scheme. A typical step of a Runge-Kutta approxima-

tion to (1) is

iVtk_ = w_O) At [D/(k_l_ - AV] (2)

where D is the spatial differencing operator, and

AV represents the artificial dissipation terms. The

derivatives of the fluxes are approximated by central

differences. In the form presented here the scheme

can not have greater than second order accuracy in



timefor nonlinearprol)lents.Forsteadystateprob-
]t,nlsthetimeaccuracyis irrelevantandthe forth of

(2) requires only two lewds of storage. If one wishes

to obtain higher accuracy in time for nonlinear prob-
hqns. then one ca,n use any formula from standard

numerical ODE theory. In particular the classicM

Runge-Kutta scheme will give fourth order accuracy
using four stages but will require more storage than

(2). We will also consider Runge-Kutta forms that

preserve the TVD nature of the scheme when the spa-

tim operator is TVD [4].[5]. In all cases, the spatial

accuracy is determined only by the accuracy of the

operator D to the derivative.

The dissipation terms are a blending of second and
fourth differences. That is.

AV= (D 2-D 4) W,

where

D2W V[(A,+ e(2' ' A] Wi.= _. _+_) (3)

and A . _' are the standard forward and backward

difference operators respectively. The variable scaling
factor A is chosen as

1 [,_ + ),,._] (5),_+_• = _

where A_ is proportional to the wave speed. The co-

efficients _("-) and e(_) are adapted to the flow and are
defined as follows:

_(2) = h'.(2) n'la_x( vi. vi--1 ). (6)

.(" _-

where n _2} and n (4) are constants to be specified.

The parameter v is a shock detector. We shall an-

alyze ways of defining v in detail in the next section.

The purpose of this second difference viscosity is to

introduce an entropy-like condition and to suppress

oscillations in the neighborhood of shocks. Ideally the
value of v should be one at shocks and be negligible

in smooth regions of the flow. The fourth-difference

dissipation term is basically linear and is included to

damp high-frequency modes and allow the scheme to

approach a steady state. Only this term affects the
linear stability of the scheme. Near shocks it is re-

duced to zero. For time dependent flows, the fourth

order dissipation is not very important and _(41 will

lisually be small or zero.

2 Shock detectors and flux

limiters

In order to see the effect of v we first define

¢i = 1 - v,. (7)

As shown in [6] ¢ can be interperted as a flux limiter.

though its properties for central difference schemes is

slightly different than for upwind schemes. The value
of ¢ is usually taken as a function of r where

ui -- ui-1 A_

r= = X-:+" (8)"_i+I -- 'o,i

According to the TVD theory for a scalar equation in
one dimension the artificial viscosity can sometimes

be negative, see (20). However, for multidimensional

vector equations with central differences we prefer
to be conservative and choose the artificial viscosity,

el2): to be positive and so we set

_',= l1 - ¢_1. (9)

For the fluid dynamic equations we choose the pres-

sure as a representative of u. The artificial viscosity

used in the original algorithm was

pi+l - 2pi +Pi-1 [ (lO)vi
Pi+l _- 2pi + Pi-1 [ '

and vi+_/2 = max(vi, vi+l). We note that with this
definition of v that ¢ is not a function of r. We shall
demonstrate in the result section that this switch

gives rise to oscillations in the flow field.

In order to connect this artificial viscosity with flux
limiters we first consider the van Leer flux limiter

given by

¢,(,.)= r + I"i + _ (11)
1+ I,'l+c"

Where _ is added to prevent the switch from being

activated by noise. This _ is mainly needed for steady

state calculations. Then after multiplying (11) by

[A+l we get

(A+ - A_)sgn(A+) (12)
1 - ¢i(r) = lZx-I + I±+l + *IA+I

Reverting back to the notation of pressure and mod-

ifying the c term we get

{p_+a - 2p, + Pi-ll
v, = I1 - ¢,(r) I = IP,+a - Pil + ]Pi - P_-tl + e'

For dimensional consistency we wish to choose e to

depend on the pressure. So we choose _ = _(pi+l +

2p, + pi-a ) •

=_

=_
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=

=
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H['I|cc.

]pi+l - 2p, + p,-1]

vi -- [pi+l - pi] + [pi - V_-I] + _(pi*l + 2pl + p,-1)

(13)

There is no special need to base the artificial viscos-

ity on the van Leer flux limiter. It is just coincidental

that tile resultant viscosity v closely resembles tile

original artificial viscosity. (10). Another alternative
is the van Albada fixlx limiter.

r + Ir] (14)
¢i(r) = 1---g-_"

We note that this limiter approaches zero for large

values of r. while most limiters approach 2 as r in-

creases. Using a similar derivation we find that the

artificial viscosity associated with the van Albada

limiter is given by

(Pi+l - 2pi + pi-1) 2

any difference in (8) if r is a forward difference over
a backward difference or a backward difference over

a forward difference. For smoothness we now want

¢'(1) = 0. Of the above limiters only the first version

of Van Albada and superbee have this property. It

follows from the analysis of [1] that an upwind scheme

can be considered as a symmetric interpolation fol-

lowed by a upwind convection operator. A central dif-

ference scheme can be represented as a downwind in-

terpolation followed by a compensating upwind con-

vection and so the total operation is symmetric.

3 The TVD Property

Consider the one-dimensional scalar conservation law

+ =o,
where

1,'i =

(15)
There is a second version of the van Albada flux

limiter used in the literature.

r+r 2

¢i(r)= l+r-''-'7" 0<r<l. (16)

Other limiters used are minmod

¢.(r) = max(rain(r, 1). 0),

and superbee

¢i(r) = max(min(2r. 1), min(r. 2). 0),

see [7].

We shM1 also consider the "'average" flux limiter

¢i(r) = minmod((1 + r)/2.2minmod(1, r)).

For each of these limiters there is a corresponding

•artificial" viscosity.

For an upwind flux limiter we have ¢(1) = _¢(r) .

Huynh [1] has shown that the resultant sctleme is
second order if ¢'(1) = 1/2. However. for a central

difference scheme we have

¢c,.t,-_t = 1 - v, = I - [1 - ¢i[

and so

¢i if d) < 1 . r < 1¢_,,t,-,l = 2-¢i ifcp> 1 .r> 1

With the van Leer and first Van Albada flux lim-

itcrs one finds that ¢(_) = ¢(r). i.e. it doeslVt make

(pi+l_pi)2+(pi_pi_l)2+_(p,+l+2pi+p,_l)_ -oc < x < oc, t>0.

Let v(t) = {v._(t)} be the approximate solution of (17)

and consider the semidiscrete equation 18
1

d I fi-1]Ttv,(t) + 2-_z [/,+_ - =
1

2Ax [Q'+½ Avi+½- Q,_½Av,_½]

,(4)

Ax [R,+_.A3v,+½ - R,-{A3v,-½]

with

(is)

Avi+] = (Av)i+l = vi+l(t) - vi(t).

A 3 is a third-difference operator defined as

A3vi+{ = vi+2(t) -- 3Vi+l(t) + 3vi(t) -- Vi-l(t).

The terms on the right hand side of (18) represent
second- and fourth-difference numerical dissipation

terms, with a (4) a constant. Define

s,+_ = sgn (Av,+½).

where sgn represents the signum function. We first

shift the indices by one in (18) and subtract (i8) from

the resulting equation. We then multiply the result

by si, ½ and sum over all i. Noting that si+ ½ = +1,

so s_+] = 1. and

s,+ i A,,,+½ = Avi+ll"

Let TV denotes the total variation as given by

Tv_-
i



we then obt;tin

i

2Ax Av+

gill

We stress that the last term v-ill not help for TVD.

Its purpose is to eliminate high frequencies and ac-
celerate convergence to a steady state. Hence, we
want this contribution to be zero. This can be ac-

complished if we demand either

{ s_+_ - 2s,+] + s,_ t = 0
or

R_+] = 0,

We are then left with

d
d--t (TV) = (19)

-si+_ (s_+_ - 2s,+_ + s___)Q,+_ Av_+_ [

Tltus, a sufficient condition that the total variation

not increase is that each term in the summation of

(19) must be positive. This means that the scheme
is TVD if

+ _> (20)

,Sv,+]

This is the inequality obtained in [6].
When driving the solution to a steady state one

frequently finds that it is not advantageous for the
scheme to be TVD. The reason is. that with TVD

schemes the switches are frequently being turned on

and off due to local noise. For steady state calcula-

tions this causes the convergence to halt at some error
level and a limit cycle results in which the residual

oscillates about some level instead of decreasing. To

prevent this from occurring we wish to prevent the
switch from being activated for small oscillations or

Shy,all discontinuities. The inequality (20) was ob-

tained by demanding that the solution be TVD and

so each term on the right hand side of/19) wa._ neg-
AI,÷. t

ative independent of the size of _ . Instead we

shall only demand that the solution be."total variation

bounded (TVB). Now, each term on the right hand

side of (19) can be positive as long as it is bounded

by a constant times [Avi+{[ . Since Si+l/2 is equal

i i

to plus or minus one we want

A f i+x_

-- Qi+l/2 + Avi+-----_< _.

a a positive constant.
We shall choose

(21)

Afi÷i (22)
Q_+l/2 = u_+1/2Ave+½ "

This is similar to (5,6) with _(2) = 1/2, u_+112 =

max(ui, ui+l), and )_ = z_L*A- We then rewrite (22)

as

<o. (2z)
(I - _'_+_n Av_+]

This implies that if -_ is small then we don't
Avi+½

need to turn on the artificial viscosity parameter _,.
af ,+_

Only when _ --* oo do we need that _ --* 1 . In

a steady state the shock speed, _ is zero and so

(23) is satisfied for any positive Q. So for a steady
state scalar equation the TVD property is trivial.

Hence. for a steady state problem we do not need the
complete TVD theory. However, in this case the solu-

tion is also trivial. Moreover, the theory for systems
is still not adequate for our purposes. Alternatively,

we choose u to depend on the strength of the shock,
Av. For weak shocks Av is small and we can choose

near one. For strong shocks Av is large and we
want _ to be small so that u is a TVD switch. For

the fluid dynamic equations we replace the vector v

by the scalar pressure, p.

To find such a u we use (13) When e = 0 we get

the TI/D switch (13) while with e = 1 we obtain a

perturbation of the original switch, (10) for transonic
flows. This switch treats the two sides of the shock

asymmetrically depending on whether p_ is to the left

or right of the shock. Thus, we replace it by

[Pi+_ - 2p, +p,-_[

]pi+_ -p,[ + [Pi -Pi-_[ + _ maz(pi+_,p,,p,-_)

In practice the switch that we use is

[pi+_ - 2pi + Pi-1]
tt i

(1 - e)(]p,,z - p,[ + ]pi - Pi-_[) + e(pi+_ + 2pi +pi-_)
(24)

i
t

!
|

7

|
|
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We wish to choose e. automatically based on the

shock strength. One possibility fi)r e is

{ rnin(Pi-2.Pi-x.P,.l_,+l.Pi-2) } vel ---- max(pi-2,Pi-l,Ih. Pi+l.Pi-2) "

where a is a free parameter. A reasonable range is

a=1/2 toa=l.

For small oscillations Pl doesn't vary much and so

¢ is slightly less than 1. For large oscillations ¢ is
equal to the relative jump across the shock. Consider

a perfectly resolved discontinuity going from PL to PR

with PR < PL . Then.

pL -- PR 6 ----•
v = (PL --PR) + epL -_L "

Let.
PR

q=--
PL

Combining these we find that.

1
V_

1 + -.q£_
1-q

Hence. for small q (i.e. for large discontinuities) v ,--

1 - qV . Hence for both very weak shocks and very

strong shocks the left hand side of (23) is small i.e.

(1 - v)Av --, 0 as Av _ 0 and also as Av --, vc .
This discussion has concentrated on the theoretical

basis of the algorithm. In practice the formula (24)
is used for transonic, supersonic and hypersonic flow

regimes.
In this section we have written the flux limiters and

artificial viscosity in terms of the pressure variable

which is appropriate for inviscid fluid dynamics. In
the next section we shall consider matrix viscosities.

With a matrix viscosity one can base the limiter in

each characteristic field on a different quantity.

4 Matrix Viscosity

In the above discussion we have discussed a scalar

equation. In the original algorithm, this procedure

was applied to each equation with the same _. The

coefficient A in (5) was chosen as equal to the spectral

radius [ul + c while u was the same switch that de-

pen(led on the pressure, for all the equations. For

time dependent flows this presents several difficul-
ties. first as seen in the result section there is exces-

sive smearing since the same coefficient is used for all
waves and is proportional to the fastest wave speed.

Second. pressure is continuous across a contact dis-

continuity and so a pressure based switch will not

sense a contact. We therefore replace the scalar dis-

sipation with a matrix dissipation, i.e A in (3.4) is now

a matrix valued function. We first define a function

of a matrix A. We assume that A can 1)c diagonal-

ized so that TAT -1 is diagonal. We then define our
function as

/(A) = _3I+ (At + A2 A3)[_2 1E_ + E2]2

+_c_ [Ea + ('r - 1)E4]

where

E1 _

T -u 1
u.__.3 _ ,a 2 It
2

m'_ -uH H

E2
0 0 O)

-u 1 0 ,
-u 2 -u 0

E3 =
-u 1 0 )-uH H 0

E4 = 000)u 2 -u 1 .

u a __2-V u

Whenever the matrix A can be diagonalized, i.e.

D = T -1AT is diagonal then a function of the ma-

trix is defined by f(A) = Tf(D)T -1, and f(D) is the

function f applied to each element of the diagonal of
D. Let the coefficients A1,1_2 and A3 be functions of

the eigenvalues of A. If A_ = u + c, A2 = u - c, A3 = u
then we recover the matrix A. When the A's are

the absolute value of the eigenvalues we obtain the
absolute value of the matrix A. In general, A1,A2

and A3 should not be exactly equal to the eigenval-

ues of A since at sonic points or stagnation points

an eigenvalue is zero and hence no artificial viscosity
would be added. Hence, the A's have a lower limit

of 0.2[u + cl. This procedure also allows one to se-

lect different switches for each eigenvalue. In partic-
ular we shall base the switch for the nonlinear fields,

with speeds A_ and A2 on the pressure. However, the
pressure is continuous across a contact discontinuity.
Hence. the switch for the linear field. A3 is based on

the temperature. T = p Putting these options to-
o

gether we choose the A's equal to el:) and e (4) times

the limited al)solute value of the eigenvalues, see(3,4).



5 Results

The results were all obtained using a multistage

Runge-Kutta scheme (2) to advance the solution in

time. For most of the computational results the origi-
nal Runge-Kutta coefficients [2] were used, al = 1/4,

_: = 1/3, a3 = 1/2. _ = 1. Shu [4] introduced an-

other set of coefficients to guarantee that the scheme

is TVD in time but is only first order accurate. The

three stage scheme has coefficients, al = 1/9.a_ =
1/3.a3 = 1 while the four stage scheme has coeffi-

cients, cq = 1/16, a2 = 1/6. as = 3/8, at = 1 .

The more stages that are used the larger the time

step allowed by stabNty requirements. However. we

found that using larger time steps introduced oscilla-

tions into the solution. In practice we chose CFL =
.75. and so there was no advantage to using the four

stage scheme. Shu [5] also introduced higher order
schemes for time dependent equations that are still

TVB. These schemes can no longer be written in the
simple form of (2). Instead each stage requires the

use of the dependent variables and fluxes at previ-

ous stages and and so more information needs to be
stored.

We solve the one dimensional Euler equations in
the domain 0 < x < 10. The initial conditions

u

are u - Om/s'T = 300K everywhere. The initial

pressure is discontinous with a ratio of p = 20 for

0 _< x _< 5 to 1 for 5 _< x _< i0. The density and

total energy are then c',dculated from the ideal gas
law with _t = 1.4.

We first consider the standard central difference al-

gorithm with a scalar viscosity and the original switch

(10) and the original Runge-Kutta coefficients with
CFL = 0.75. The first figure is a plot of density as a

function of x at a nondimensional time of 0.2. Large

oscillations appear both between the r a_facfion wave

and the contact discontinuity and between the con-

tact and the shock. In figure 2 the density is plotted

with the standard switch replaced by the van Leer

based switch (9.11). The change in the switch has
eliminated all oscillations since the scheme is TVD

for the scalar case with this switch [6}. There are still
some small oscillations in the rarefaction and the con-

tact is very smeared. In figure 3 we show the same

case using the matrix viscosity. The switch for the
nonlinear waves is based on the pressure as before.

Since the pressure is continuous across a contact dis-

continuity the switch for the entropy wave is based

on the temperature, though one could also use en-

tr0py: The smearing near the contact is considerably

reduced but there remains a small glitch near the

sonic point. Using the van Albada(1) based switch

improves the treatment of the sonic point. The use

of superbee for the nonlinear wave introduced new

oscillations a.s seen in figure 4. We conclude that for

the central difference schemes superbee should never
be used for the nonlinear waves. The results with

minmod was similar to the van Leer viscosity but

with a slightly less sharp shock. In all cases the head
of the rarefaction wave was smeared out. In figure

5 we present the density when superbee is used for

the linear wave while van Albada(1) is used for the
nonlinear waves. We also used these schemes with

the e as given in (11). For the van Leer limiter we

could choose e = .1 without significantly derading the
results while for van Albada(1) we had to choose e

about 0.005. For the steady problems we can use the
van Leer limiter with e = .1 and still get monotone

profiles.

The cases presented until now were with the orig-

inal four stage Runge-Kutta coe_cients and CFL =

0.75. Raising the CFL number introduced oscilla-
tions. We next tried the first order scheme suggested

by Shu [5] but still got oscillations when the CFL

was larger than 1. We then used the third order

Runge-Kutta scheme suggested by Shu [4]. Using
the same switches for both the linear and nonlinear

switches and these third order Runge-Kutta coeffi-

cients resulted in a sharper profile but some oscilla-

tions. Hence, in figure 6 we present the results for

Shu's third order Scheme in time, using superbee for

the finear field and the van Leer viscosity for the non-

linear field. Figure 7 presents the same case as figure
6 but with the CFL raised to 0.95. This introduced

a small oscillation near the sonic point but otherwise

was very satisfactory. It is interesting to note that

with the scheme of Lerat and Sides [3] the solution

becomes less oscillatory as the time step is increased.
In our last case we consider the effect of using diffei-

ant variables for the switches. Until now the switch

for the nonlinear fields has been based on the pressure
while the switch for the linear field has been based on

the temperature. We now plot the results when each
characteristic field has an artificial viscosity switch

based on that characteristic variable. In figure 8 the

density is plotted for this case using Shu's third or-

der Runge-Kutta coefficients, CFL = 0.75, the super-
bee limiter for the contact discontinuity based on the

linearized entropy variable Ap - c2Ap, and the van

Leer limiter for the acoustic variables Ap + pcAu and

Ap - pcAu. We see that there is an additional im-

provement in the resolution of the contact discontinu-

ity. The solutions presented are all for the time t=0.2.

Watching the time evolution one sees that there are

many oscillations that occur in the initial breakup of

the discontinuity into a shock and a contact. These

oscillations disappear as the solution progresses.

E

6



Wefinallyconsiderasteadystatetwodimensional
cah:ulation.Wesolvefor theturbulentflowabouta
1)hintconeusingaBaldwin-Loma.xturbulencemodel
at M_ = 25..a = 0 . The grid is 400 x 80. The

geometry is shown ill figure 9a. In figure 9b we plot

the pressure and Ivlach mlmber along the coordinate

line directly in front of the cone. We choose _ =

0.9 in (24). With this high value of e there are only

three points in the shock and no overshoots even at

this hypersonic speed. If e is chosen equal to one

(i.e. original switch (10)) the code does not converge.
With smaller values of _ the convergence is slowed. In

figure 9c we show the convergence rate for this case

on the three grids used in the FMG version of the

multigrid.

6 Conclusion

Using a central difference scheme with an artifi-
cial viscosity we can duplicate most of the prop-

erties of upwind TVD schemes. Solving the one

dimensional time dependent Euler equations we

get high resolution solutions for the shocks and

the contact discontinuity. The main ingredients

are an improved shock locator and a matrix arti-

ficial viscosity. This shock locator can be based

on any of the upwind flux limiters. Superbee is
the best for the contact while either van Leer or

van Albada(1) is best for the nonlinear waves.
Further minor improvements can be obtained by

using a high order TVD Runge-Kutta scheme

and basing the switch on the characteristic vari-

ables. The TVB Runge-Kutta schemes is slightly

more accurate than the standard Runge-Kutta
schemes.

There are major differences between the time de-

pendent problem and the steady state problem.

For the time dependent problem it was necessary
for the scheme to be TVD-like in order to avoid

oscillations. However. for the steady state prob-
lem we use a coefficient for the artificial viscos-

ity that is considerably below that required for

the solution to be TVD and still get monotone

shocks even for very strong discontinuities with

about four points in the shock layer. Further-

more. high order TVD schemes frequently slow
down the convergence to the steady state unless

the flux limiters are carefully constructed. When

using a TVD scheme coupled with a multigrid

acceleration it may be neccessary to limit the
transfer of the residuM to coarser meshes in the

vicinity of shocks. Hence. there is a need for

more work to extend the TVD theory to steady

state problems and also weak shocks.

For time dependent flows we were not able to use

a CFL greater than one even though the linear

stability of the Runge-Kutta allowed larger time

steps. For the steady state problems one can use

larger time steps. Hence, it is efficient to use

many stages in the Runge-Kutta method to in-
crease the CFL stability limit even though one is

not interested in high time accuracy. Neverthe-
less, the limitations on the time step for time de-

pendent problems indicates that even for steady
state problems one should limit the local CPL
near shocks to less than one at least in the tran-

sient phase. This is crucial for hypersonic flow.
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