11,003 research outputs found

    Commuting self-adjoint extensions of symmetric operators defined from the partial derivatives

    Get PDF
    We consider the problem of finding commuting self-adjoint extensions of the partial derivatives {(1/i)(\partial/\partial x_j):j=1,...,d} with domain C_c^\infty(\Omega) where the self-adjointness is defined relative to L^2(\Omega), and \Omega is a given open subset of R^d. The measure on \Omega is Lebesgue measure on R^d restricted to \Omega. The problem originates with I.E. Segal and B. Fuglede, and is difficult in general. In this paper, we provide a representation-theoretic answer in the special case when \Omega=I\times\Omega_2 and I is an open interval. We then apply the results to the case when \Omega is a d-cube, I^d, and we describe possible subsets \Lambda of R^d such that {e^(i2\pi\lambda \dot x) restricted to I^d:\lambda\in\Lambda} is an orthonormal basis in L^2(I^d).Comment: LaTeX2e amsart class, 18 pages, 2 figures; PACS numbers 02.20.Km, 02.30.Nw, 02.30.Tb, 02.60.-x, 03.65.-w, 03.65.Bz, 03.65.Db, 61.12.Bt, 61.44.B

    The Globular Cluster Systems in the Coma Ellipticals. III: The Unique Case of IC 4051

    Full text link
    Using archival \hst WFPC2 data, we derive the metallicity distribution, luminosity function, and spatial structure of the globular cluster system around IC 4051, a giant E galaxy on the outskirts of the Coma cluster core. The metallicity distribution derived from the (V-I) colors has a mean [Fe/H] = -0.3, a near-complete lack of metal-poor clusters, and only a small metallicity gradient with radius; it may, however, have two roughly equal metallicity subcomponents, centered at [Fe/H] ~ 0.0 and -1.0. The luminosity distribution (GCLF) has the Gaussian-like form observed in all other giant E galaxies, with a peak (turnover) at V = 27.8, consistent with a Coma distance of 100 Mpc. The radial profiles of both the GCS and the halo light show an unusually steep falloff which may indicate that the halo of this galaxy has been tidally truncated. Lastly, the specific frequency of the GCS is remarkably large: we find S_N = 11 +- 2, resembling the central cD-type galaxies even though IC 4051 is not a cD or brightest cluster elliptical. A formation model consistent with most of the observations would be that this galaxy was subjected to removal of a large fraction of its protogalactic gas shortly after its main phase of globular cluster formation, probably by its first passage through the Coma core. Since then, no significant additions due to accretions or mergers have taken place.Comment: 24 pp. plus 13 Figures. Postscript file for the complete paper can also be downloaded from http://www.physun.mcmaster.ca/~harris/WEHarris.html. Astron.J., in pres

    Charge exchange contribution to the decay of the ring current, measured by energetic neutral atoms (ENAs)

    Get PDF
    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases

    Harmonic analysis of iterated function systems with overlap

    Full text link
    In this paper we extend previous work on IFSs without overlap. Our method involves systems of operators generalizing the more familiar Cuntz relations from operator algebra theory, and from subband filter operators in signal processing.Comment: 37 page

    Entropy Encoding, Hilbert Space and Karhunen-Loeve Transforms

    Full text link
    By introducing Hilbert space and operators, we show how probabilities, approximations and entropy encoding from signal and image processing allow precise formulas and quantitative estimates. Our main results yield orthogonal bases which optimize distinct measures of data encoding.Comment: 25 pages, 1 figur

    The Fundamental Plane of Gravitational Lens Galaxies and The Evolution of Early-Type Galaxies in Low Density Environments

    Get PDF
    Most gravitational lenses are early-type galaxies in relatively low density environments -- a ``field'' rather than a ``cluster'' population. We show that field early-type galaxies with 0 < z < 1, as represented by the lens galaxies, lie on the same fundamental plane as those in rich clusters at similar redshifts. We then use the fundamental plane to measure the combined evolutionary and K-corrections for early-type galaxies in the V, I and H bands. Only for passively evolving stellar populations formed at z > 2 (H_0=65 km/s Mpc, Omega_0=0.3, Lambda_0=0.7) can the lens galaxies be matched to the local fundamental plane. The high formation epoch and the lack of significant differences between the field and cluster populations contradict many current models of the formation history of early-type galaxies. Lens galaxy colors and the fundamental plane provide good photometric redshift estimates with an empirical accuracy of -0.03 +/- 0.11 for the 17 lenses with known redshifts. A mass model dominated by dark matter is more consistent with the data than either an isotropic or radially anisotropic constant M/L mass model, and a radially anisotropic model is better than an isotropic model.Comment: 36 pages, 9 figures, 6 tables. ApJ in press. Final version contains more observational dat

    Composition Mixing during Blue Straggler Formation and Evolution

    Get PDF
    We use smoothed-particle hydrodynamics to examine differences between direct collisions of single stars and binary star mergers in their roles as possible blue straggler star formation mechanisms. We find in all cases that core helium in the progenitor stars is largely retained in the core of the remnant, almost independent of the type of interaction or the central concentration of the progenitor stars. We have also modelled the subsequent evolution of the hydrostatic remnants, including mass loss and energy input from the hydrodynamical interaction. The combination of the hydrodynamical and hydrostatic models enables us to predict that little mixing will occur during the merger of two globular cluster stars of equal mass. In contrast to the results of Proctor Sills, Bailyn, & Demarque (1995), we find that neither completely mixed nor unmixed models can match the absolute colors of observed blue stragglers in NGC 6397 at all luminosity levels. We also find that the color distribution is probably the crucial test for explanations of BSS formation - if stellar collisions or mergers are the correct mechanisms, a large fraction of the lifetime of the straggler must be spent away from the main sequence. This constraint appears to rule out the possibility of completely mixed models. For NGC 6397, unmixed models predict blue straggler lifetimes ranging from about 0.1 to 4 Gyr, while completely mixed models predict a range from about 0.6 to 4 Gyr.Comment: AASTeX, 28 pg., accepted for ApJ, also available at http://ucowww.ucsc.edu/~erics/bspaper.htm

    Ages, metallicities and α\alpha-element enhancement for galaxies in Hickson compact groups

    Full text link
    Central velocity dispersions and eight line-strength Lick indices have been determined from 1.3A˚{\rm \AA} resolution long-slit spectra of 16 elliptical galaxies in Hickson compact groups. These data were used to determine galaxy properties (ages, metallicities and α\alpha-element enhancements) and allowed a comparison with the parameters determined for a sample of galaxies in lower density environments, studied by Gonz\'alez (1993). The stellar population parameters were derived by comparison to single stellar population models of Thomas et al. (2003) and to a new set of SSP models for the indices Mg2_2, Fe5270 and Fe5335 based on synthetic spetra. These models, based on an update version of the fitting functions presented in Barbuy et al. (2003), are fully described here. Our main results are: (1) the two samples have similar mean values for the metallicities and [α\alpha/Fe] ratios, (2) the majority of the galaxies in compact groups seem to be old (median age of 14 Gyr for eight galaxies for which ages could be derived), in agreement with recent work by Proctor et al. (2004). These findings support two possible scenarios: compact groups are either young systems whose members have recently assembled and had not enough time to experience any merging yet or, instead, they are old systems that have avoided merging since their time of formation.Comment: Accepted for publication in A
    • 

    corecore