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Abstract 

Worldwide depletion of fish stocks has led fisheries managers to become increasingly 

concerned about rebuilding and recovery planning. To succeed, factors affecting recovery 

dynamics need to be understood, including the role of fisheries-induced evolution. Here we 

investigate a stock’s response to fishing followed by a harvest moratorium by analyzing an 

individual-based evolutionary model parameterized for Atlantic cod Gadus morhua from its 

northern range, representative of long-lived, late-maturing species. The model allows 

evolution of life-history processes including maturation, reproduction, and growth. It also 

incorporates environmental variability, phenotypic plasticity, and density-dependent 

feedbacks. Fisheries-induced evolution affects recovery in several ways. The first decades of 

recovery were dominated by demographic and density-dependent processes. Biomass 

rebuilding was only lightly influenced by fisheries-induced evolution, whereas other stock 

characteristics such as maturation age, spawning stock biomass, and recruitment were 

substantially affected, recovering to new demographic equilibria below their pre-harvest 

levels. This is because genetic traits took thousands of years to evolve back to pre-harvest 

levels, indicating that natural selection driving recovery of these traits is weaker than 

fisheries-induced selection was. Our results strengthen the case for proactive management of 

fisheries-induced evolution, as the restoration of genetic traits altered by fishing is slow and 

may even be impractical. 

 

 

Key words: fisheries-induced evolution, recovery, rebuilding, probabilistic maturation 

reaction norm, maturation, reproductive investment, eco-genetic model, Gadus morhua 



4 

 

Introduction 

One quarter of the world’s fish stocks are overexploited, depleted, or recovering, according to 

the United Nations’ Food and Agriculture Organization (FAO 2009). Although biological 

extinctions are very rare (Dulvy et al. 2003; Swain and Chouinard 2008), several of these 

declines have lead to collapses of fishing activities to a state of ‘commercial extinction,’ 

where targeted fisheries are no longer commercially viable (Myers et al. 1996). Infamous 

examples of commercial extinctions of major fisheries targets include stocks of sardine 

Sardinops sagax off California and Japan in the late 1940s, the Peruvian and Chilean stocks 

of anchovy Engraulis ringens in 1972 (Csirke 1977; Murphy 1977), the Norwegian spring-

spawning stock of herring Clupea harengus in 1968 (Toresen and Østvedt 2000), and the 

Newfoundland-Labrador stock of cod Gadus morhua through the 1980s (Hutchings 1996). 

Classic theory of fishing suggests rapid population recovery if fishing is ceased, but in 

practice recovery rates have been much slower than expected, and in some cases the expected 

recovery has not taken place at all (Hutchings 2000a). 

Stock collapses have enormous social and economic costs (e.g., Haedrich and Hamilton 

2000), and painful experiences have led politicians and fisheries management institutions to 

gradually shift focus from ‘how much to catch’ to ‘how to make sure there is something to 

catch’. For example, the United Nations 2002 World Summit on Sustainable Development 

declared that all fish stocks should be restored to levels that produce maximum sustainable 

yield by the year 2015. In the United States, the Magnuson-Stevens Fishery Conservation and 

Management Act of 1996 mandates that overfished stocks should be rebuilt within less than 

10 years, unless some circumstance such as species biology dictates a longer time frame 

(Safina et al. 2005; Rosenberg et al. 2006). 

To rebuild a stock successfully, it is crucial to have a good understanding of the factors that 

influence recovery dynamics and the associated timescales. Recovery can be seen as a 

reversal of processes involved in fishing a population down to low abundance. Hence, if we 

first understand what happens to fish stocks when we harvest them, it then becomes easier to 

address the subsequent question of how various harvest-induced changes are reverted if 
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fishing is reduced or ceased. The dynamics a population exhibits in response to fishing 

involves changes at several levels of system organization. Below we review five of these. The 

classic theory of fishing considers the first two levels. The most obvious effect of fishing is a 

reduction in population abundance and biomass. This effect is represented in all fishery 

models. However, not all biomass is the same: at a second level, fishing changes the 

demographic composition of a stock toward a dominance of younger and smaller fish. A 

truncated age and size structure may have consequences for population dynamics, and has 

been shown to reduce reproductive potential (Marteinsdottir and Thorarinsson 1998; 

Murawski et al. 2001), increase variability in recruitment or population abundance (Longhurst 

2002; Hsieh et al. 2006), and make a stock more vulnerable to environmental fluctuations  

(Ottersen et al. 2006; Hsieh et al. 2008). 

At a third level, fishing may change the biotic environment, triggering changes in 

phenotypically plastic traits of individuals. Fishing may reduce intraspecific competition, 

thereby promoting phenotypic plasticity in the form of increased growth, which often leads to 

earlier maturation (Trippel 1995; Lorenzen and Enberg 2002; Kell and Bromley 2004). 

Fishing may also change interspecific interactions, an appreciation that has sparked a move 

toward the ecosystem approach to fisheries management (Pikitch et al. 2004; Francis et al. 

2007). 

At a fourth level, an exploited population may be evolutionarily adapting to the new mortality 

regime (Rutter 1902; Law and Grey 1989). A growing body of research suggests that such 

fisheries-induced evolution is taking place in a number of fish species and stocks worldwide 

(reviewed in e.g., Jørgensen et al. 2007; Kuparinen and Merilä 2007; Allendorf et al. 2008; 

Fenberg and Roy 2008; Heino and Dieckmann 2008; Hutchings and Fraser 2008; Heino and 

Dieckmann in press). The possibility that these changes are genetic means that fishing may be 

changing harvested species more fundamentally than previously thought. There are theoretical 

reasons to believe that such evolutionary changes may be slow and, within practical 

timescales, even impossible to reverse (Law and Grey 1989; Dunlop et al. 2009). Yet, a recent 

laboratory study on Atlantic silverside Menidia menidia showed that the reversal of at least 
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one key life-history trait (body size) was possible and in some cases relatively fast, although 

the recovery rate would depend on the form of selection that led to the changes in the first 

place (Conover et al. 2009). 

At a fifth level, due to several of the processes above, harvesting can lead to changes in 

ecosystem structure, potentially causing ecological regime shifts and alternative stable states 

(Jackson et al. 2001; Scheffer et al. 2005). Frank et al. (2005) have suggested that removal of 

top predators from the ecosystem may lead to cascading effects that affect the whole 

ecosystem. Such trophic cascades may have long-lasting consequences, and also influence 

recovery processes of harvested populations (Frank et al. 2005). 

The extents to which overfishing affects stock biomass, population structure, phenotypic 

plasticity, adaptive evolution, or ecosystem structure have important implications for 

recovery. In particular, the failure of some fish stocks to recover after their collapse 

(Hutchings 2000a; Hutchings and Reynolds 2004) has raised concerns as to whether fisheries-

induced evolution is contributing to this lack of recovery (Hutchings 2004; Hutchings 2005; 

Walsh et al. 2006). For example, before the infamous collapse of the northern cod off 

Newfoundland and Labrador, marked changes occurred in key life-history traits such as 

maturation schedule (Olsen et al. 2004). Around the same time, other cod stocks in the region 

showed changes in growth that are interpreted as being indicative of evolution (Swain et al. 

2007; Swain et al. 2008). 

The design and implementation of a rebuilding plan depend on the nature of the changes in 

population-level and individual-level characteristics that occurred through fishing, and on the 

degree to which these changes are anticipated to be reversible. Our aim in this study is to 

investigate the rebuilding of stocks following a period of exploitation, focusing on the role of 

fisheries-induced evolution and using a model that includes four of the five biological 

response levels described above (excluding ecosystem-level effects). The life history of our 

model population resembles that of a slow-growing and late-maturing fish species such as 

Atlantic cod Gadus morhua in the northern parts of its range. By comparing the evolutionary 

model to a model version in which evolution is ‘turned off,’ both during the exploitation 
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phase and throughout the subsequent recovery, we address how fisheries-induced evolution 

affects the biological dynamics and examine implications for recovery. Focal questions are: 

How will adaptive evolution change the expected rate and extent of recovery? And, when 

fisheries management is oblivious of fisheries-induced evolution, what errors will be made? 

Model description 

We use an individual-based model that combines the quantitative genetics of evolving life-

history traits with individual-level ecological processes of growth, survival, and reproduction 

and with population-level ecological processes such as density dependence and environmental 

variability. Our modeling methodology extends earlier individual-based evolutionary models 

(Holland 1992; Huse et al. 1999) and falls within the framework of eco-genetic modeling 

(Dunlop et al. 2007; Dunlop et al. 2009; Dunlop et al. this issue; Höök and Wang this issue; 

Okamoto et al. this issue). 

Briefly described, each individual carries genetic traits affecting its life history through 

growth rate, maturation schedule, and reproductive investment. An individual’s genetic traits 

are expressed imperfectly, to allow for the chance environmental variation of phenotypic traits 

around genetic traits. The individual’s genetic traits together with its environment thus 

determine its life history of growth and reproduction, and its risk of dying from natural causes 

or fishing. Population dynamics emerge when many such interacting individuals are coupled 

through a shared environment. The environmental influences are manifested as density 

dependence and stochastic fluctuations acting on recruitment and growth conditions, and 

fitness emerges as the success of individuals to grow, survive, mate, and reproduce—thus 

producing offspring that transmit their genetic traits to future generations. We model only 

female life histories. However, the ‘females’ in our model reproduce sexually and mate with 

each other, and can therefore be considered as hermaphrodites. The model thus includes 

sexual reproduction and evolves toward evolutionarily stable strategies for the female sex; it 

is not meant to predict how evolution might differentially affect males. 
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Environmental variability 

A model in which genotypes are inherited and selection acts on phenotypes requires careful 

consideration of the noise processes affecting the link from genotypes to phenotypes. Without 

environmental variation confounding this link, the coupling of genotypes to selection 

pressures would be too strong, the quantitative traits would have unrealistically high 

heritabilities, and the speed of evolution would be exaggerated. Adding environmental 

variation obscures the link from genotypes to phenotypes, and thus to selection pressures, and 

helps bring heritabilities down to levels often observed in nature (0.2–0.3 for life-history 

traits; Gjedrem 1983; Carlson and Seamons 2008). In living organisms, the ‘noise’ in the 

correlation between genotypes and selection pressures is a conglomerate of different 

processes, most of which are not fully understood. We have chosen to infuse such 

environmental variability at different stages through the following noise components: 

i) Inheritance of genetic traits. For each genetic trait, an offspring’s trait value typically 

deviates from the mid-parental value, reflecting the effects of mutation, segregation, 

and recombination. 

ii) Phenotypic expression of genetic traits. At birth and for each genetic trait, the 

individual’s expressed phenotypic trait deviates from its inherited genetic trait, 

reflecting micro-environmental variation as well as chance effects of epistatis and 

dominance. 

iii) Population-level inter-annual variation in growth conditions. This reflects temporal 

fluctuations in the abiotic and biotic environment, for example, in temperature or 

resource availability. 

iv) Individual-level inter-annual variation in growth conditions. This reflects variability 

between individuals due to chance events, for example, in resource acquisition or 

environmental exposure. 

v) Population-level variation around recruitment function. This reflects a stochastic 

element of population dynamics and affects growth conditions through density 

dependence. 
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vi) Demographic stochasticity in mortality. An individual’s probability of dying from 

natural causes or harvesting is determined by its growth strategy and size, but whether 

it actually dies is a random event. 

vii) Demographic stochasticity in mating. Similarly, an individual’s probability of being a 

parent depends on its gonad size, but random parents are drawn according to this 

probability. 

We have used normally distributed random variables for i), ii), and iv). For iii) and v), 

lognormal distributions were used. A lognormal distribution was chosen for iii) because 

ecological data is often characterized by distributions with a long tail (Hilborn and Mangel 

1997) and for v) following several studies that consider this process lognormal in nature 

(Hennemuth et al. 1980; Caputi 1988; Fogarty 1993b; Fogarty 1993a; Myers et al. 1995). 

Genetic traits and their expression 

Each individual possesses four inherited quantitative genetic traits: a growth coefficient g  

that affect its resource acquisition, two traits that specify its maturation schedule through the 

slope s  and intercept y  of a linear probabilistic maturation reaction norm (PMRN; Heino et 

al. 2002a; Dieckmann and Heino 2007) and a trait r  that quantifies its reproductive 

investment in terms of its gonado-somatic index (gonad mass/somatic mass) and thus governs 

resource allocation to reproduction from maturation onward. The population’s distribution of 

these genetic traits determines their additive genetic variances. 

During expression, phenotypic traits (denoted by G , S , Y , and R ) are subject to different 

noise processes as described above. Here and in the following,   with different subscripts 

denotes a random number drawn from a normal distribution with mean 1 and given standard 

deviation (Table 1). The phenotypic trait )(iS  for individual i ’s genetic PMRN slope )(is  is 

thus 

 s( ) ( )· ( )S i i s i ,         (1) 
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where s( )i  describes the expression noise and is drawn once per lifetime (the argument i  in 

s( )i  indicates that different values are drawn for each individual). Analogously, we have 

y( ) ( )· ( )Y i i y i  and r( ) ( )· ( )R i i r i  (see Table 2 for units). 

The phenotypic growth coefficient G  is influenced by four processes. First is the expression 

noise g( )i . Second is an individual-level inter-annual noise, i ( , )i t . Third is a population-

level inter-annual noise E ( )te , where E( )t  is a normally distributed random deviate (Table 1) 

so that E ( )te  is lognormally distributed. This noise component represents environmental 

fluctuations that influence all individuals in a similar way, for example, through resource 

availability or temperature, which affect the growth of many fish species, including Atlantic 

cod (Hansson et al. 1996). Fourth is the population-level density dependence )(tD  specified 

under ‘Density-dependent growth’ below (Equation 14). Thus, 

 E ( )
g i( , ) ( )· ( , )· · ( )· ( )tG i t i i t e D t g i  .       (2) 

The variance in the expression noise for each trait is set such that the total expressed variance 
2
E  is related to the additive genetic variance 2

A  as  2 2 2
E A 1h    , with 2

A  determined 

by an assumed initial genetic coefficient of variation GCV  and by the initial mean trait values 

(Table 1; for further details see Dunlop et al. 2009). Our assumed value of 6% for GCV  is on 

the conservative end of estimates from empirical work (Houle 1992; see Dunlop et al. 2007 

for the sensitivity of evolutionary rate to assumed initial genetic coefficient of variation; see 

also Dunlop et al. 2009). See Table 1 for means and standard deviations of the different noise 

processes. 

Life-history processes 

An individual’s phenotype consists of its expressed genetic traits ( )S i , ( )Y i , ( )R i , and 

( , )G i t , its length ),( tiL , its age )(iA , and its maturity status. The time step in our model is 

one year. The annual modeling cycle can be divided into four processes: (1) sexual 

maturation, (2) growth of soma and gonads, (3) natural and fishing mortality, and (4) 

reproduction and inheritance. 
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Sexual maturation 

We model the maturation process using probabilistic maturation reaction norms (PMRNs, 

Figure 1, Heino et al. 2002a; reviewed in Dieckmann and Heino 2007). Whether an immature 

individual is likely to mature in a given year probabilistically depends on its age, size, and its 

PMRN. We assume a linear PMRN with constant width. The PMRN is thus determined by 

the phenotypic intercept )(iY  and slope )(iS . The probability to mature is described by the 

logistic regression 

 p50( , ) 1/[1 exp( ( ( , ) ( , )) / )]p i t L i t L i t     ,      (3) 

where ),( tiL  is the length of individual i  in year t , and p50( , )L i t  is the length at 50% 

maturation probability, calculated as p50( , ) ( ) ( )· ( , )L i t Y i S i A i t  . The parameter   is 

determined by the PMRN width w  as 

 
u llogit logit 

w

p p
            (4) 

with logit ln( /(1 ))p p p  , where lp  and 
up  specify the lower and upper probability 

bounds, respectively, chosen for defining the PMRN width (in our model, we choose 

quartiles, l 0.25p   and u 0.75p  ; Fig. 1A). Maturation is modeled as a stochastic process of 

Bernoulli trials, and takes place if a number randomly drawn from a uniform distribution 

between 0 and 1 is smaller than ),( tip . 

Growth of soma and gonads 

For growth, we use a model that generalizes the model by Lester et al. (2004), flexibly 

treating the allometric scaling exponents as parameters (David S. Boukal and Ulf Dieckmann, 

unpublished). Length L  was assumed to scale with weight W  as 1
1

bLaW  , and gonadic and 

somatic tissue were assumed to be energetically equivalent. Resource acquisition scales with 

weight as 21 1( , ) yearbd
W G i t W

dt
  . The growth coefficient ),( tiG  thus specifies the amount 

of resources an individual has available, which it can invest into the growth of soma or 
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gonads. Individual length growth is thus determined by the phenotypic growth coefficient 

( , )G i t  and reproductive investment ( )R i  according to 

 
1 2 2

1 2
2 1

2

( , ) ( , )
( , 1)

1 ( )

b b b

b b
L i t b G i t a

L i t
b R i

   .      (5) 

Before maturation, ( ) 0R i  , as juveniles use all acquired resources for somatic growth. 

Equation (5) implies a maximum possible gonado-somatic index of     1 2 2
1, ,

b b bG i t L i t a
  , at 

which ( )R i  hence is capped. Individual fecundity Q  is given by gonad weight divided by the 

weight eW  of a single egg, 

 e( , ) ( )· ( , ) /Q i t R i W i t W .        (6) 

The amount of available resources is variable, so that under unfavorable resource conditions, 

mature individuals may not have enough resources to grow as well as to reproduce. In such 

cases, individuals will prioritize reproduction over growth. 

Natural and fishing mortality 

Natural mortality consists of three components: (i) size-independent mortality 0m  due to, for 

example, diseases and parasites; (ii) size-dependent predation mortality pm  during activities 

other than foraging (e.g., resting, migrating, hiding); and (iii) size-dependent predation 

mortality fm  related to foraging (C. Jørgensen and Ø. Fiksen, unpublished). We base the size 

dependence of mortality on observations in marine systems showing that mortality scales with 

length as 2dL  with an allometric exponent of about 75.02 d  (Peterson and Wroblewski 

1984; Brown et al. 2004). Because length can change substantially over one year, we use the 

average length in a year to determine the instantaneous rate of predation mortality, 

   21
p 1 2( , ) ( , ) ( , 1)

d
m i t c L i t L i t

      .      (7) 

While smaller individuals are generally more vulnerable to predators, all individuals can 

accept a higher foraging mortality to achieve a higher resource intake and, consequently, a 
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higher growth rate (Walters and Juanes 1993; Biro et al. 2006; Biro and Post 2008; C. 

Jørgensen and Ø. Fiksen, unpublished). In our model, the higher resource intake enabled by 

higher risk-exposure thus implies higher foraging mortality, 

 3
f 2 g p( , ) [ ( ) ( )] ( , )dm i t c i g i m i t    .       (8) 

The foraging mortality scales with the overall size-dependent predation mortality pm , and is 

thus higher for smaller fish, which is in line with observations of juvenile fish spending much 

of their time hiding from predation and trying to minimize the risk associated with foraging 

(Walters and Juanes 1993 and references therein). This risk associated with foraging can 

depend, for example, on the total time spent foraging, which, when increased, results in 

higher encounter rates with predators. 

In addition to the natural mortality components, individuals are potentially subject to fishing 

mortality at an instantaneous rate F . Fishing mortality is size-dependent, and we use a 

sigmoid selectivity curve as follows, 

 1
502( , ) 1/[1 exp( ( ( ( , ) ( , 1)) ))]U i t L i t L i t L       ,    (9) 

where   determines the steepness of the selectivity curve, 1
2 ( ( , ) ( , 1))L i t L i t   is the mean 

length of individual i  in year t , and 50L  is the length at which an individual has a 50% 

probability of being captured relative to the asymptotic maximum capture probability at large 

sizes (the maximum slope of selectivity as a function of mean length occurs at 50L  and equals 

1
4 ). The instantaneous fishing mortality rate depends the selective curve and on the harvest 

rate maxf  at sizes at which fish are fully vulnerable to the fishery, 

 max),(),( ftiUtiF  .         (10) 

The total instantaneous mortality rate is 0 f p( , ) ( , ) ( , ) ( , )Z i t m m i t m i t F i t    , and 

individual i ’s resultant annual probability of dying is ( , ) year( , ) 1 Z i tP i t e   , which the model 

again realized through Bernoulli trials. The parameter values chosen (Table 3) produce natural 

mortality rates that are comparable with estimates from field studies and that are used in 
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assessment work of Atlantic cod (Sinclair 2001; ICES 2003), giving a total instantaneous 

natural mortality rate of 1
0 f p( , ) ( , ) 0.25 yearm m i t m i t      for an individual of the average 

age and size at maturation. 

Reproduction and inheritance 

The number 0( , )n i t  of offspring produced by parent i  in year t  is proportional to that 

parent’s share of total population fecundity, 

 0 0

( , )
( , ) ( )

( , )
j

Q i t
n i t N t

Q j t
  .        (11) 

Here, the sum extends over the entire mature population and )(0 tN  is the total number of 

recruits in year t  as determined by Beverton-Holt recruitment as explained under ‘Density-

dependent recruitment’ below (Equation 13). The parent produces each offspring with a 

randomly selected partner. The partner is chosen with a probability proportional to its gonad 

size. The use of multiple partners is motivated by the many marine fish that are batch 

spawners. For example, Atlantic cod can produce 20+ batches within a month (Kjesbu et al. 

1996) and there is thus a high probability that the offspring of one female are sired by several 

partners. 

In our model, trait inheritance follows quantitative genetics theory (Roughgarden 1979; 

Falconer and Mackay 1996; Lynch and Walsh 1998), as life-history traits are usually highly 

polygenic quantitative characters determined by many loci (Roff 1992; Conner and Hartl 

2004). An offspring inherits the genetic traits from its parents, and we randomly draw the 

offspring’s trait values from a normal distribution with a mean given by the trait’s mid-

parental value. Thus, the offspring o  of parents i  and j  will have its genetic traits, here 

specified for the growth trait, determined by 

 1
g2( ) [ ( ) ( )] ( )g o g i g j o   ,       (12) 
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where g  is randomly drawn from a normal distribution with zero mean that reflects the 

effects of mutation, segregation, and recombination of the underlying loci; its standard 

deviation is specified for each trait separately (Table 1) and equals a CV of 0.071 multiplied 

with the trait’s mean in the population prior to fishing, implying a constant mutation-

segregation-recombination kernel (Roughgarden 1979). The emergent heritability for age at 

maturation is around 0.2 at equilibrium before fishing, a conservative value within the range 

typically observed for life-history traits in general (Gjedrem 1983; Law 2000; Carlson and 

Seamons 2008) and for the proportion of mature 2-year-old Atlantic cod in particular (Kolstad 

et al. 2006). 

Density regulation 

Density-dependent recruitment 

The number of newborns in a given year is density-dependent and determined by a Beverton-

Holt recruitment function (Beverton and Holt 1957) that depends on the total fecundity 

( , )
j
Q j t  of the population (Fig. 1C), 

 R ( )
0

( , )
( )

1 ( , )
j t

j

Q j t
N t e

Q j t



  
 .       (13) 

Here, R ( )te  describes population-level inter-annual environmental variability in recruitment 

modeled as a lognormal process, where R( )t  is a normally distributed random deviate (Table 

1, see Fig. 1F for a time series of recruitment). The parameter   measures the survival of 

recruits when total fecundity is low, while   specifies the strength of density dependence; the 

asymptotic number of recruits when total fecundity is high is given by   (Quinn and 

Deriso 1999). 

Density-dependent growth 

Conspecific density may affect the growth of fish through resource competition (Lorenzen 

and Enberg 2002). Realized growth is thus influenced also by population biomass (Fig. 1B). 
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We express the effect of density dependence through the factor )(tD  that influences growth 

multiplicatively (Equation 2), 

 1( ) 1 [ ( ) / 1]D t d B t B    ,        (14) 

where 1d  specifies the strength of density dependence, )(tB  is the total biomass of all 

individuals aged 1 year or older in year t , and we choose B  so that the time average of )(tD  

equaled 1 at the stochastic equilibrium before harvesting. 

[Figure 1 here] 

Model parameterization and model runs 

The model was parameterized to describe a population resembling Atlantic cod Gadus 

morhua in the northern part of its range. We expect this parameterization to be roughly 

representative also of other slow-growing and late-maturing fish species. Where available, 

parameters for cod were taken from the literature (Table 3). However, some parameters are 

unknown and cannot readily be estimated from available data. Thus, the unknown parameters 

were chosen following a pattern-oriented modeling strategy, which ensures that the emergent 

model properties qualitatively and quantitatively resemble the observed natural patterns 

(Grimm et al. 2005). To achieve this, the model was initially run with likely parameter values 

and its output compared to data available in the literature and in stock-assessment reports. 

Parameters responsible for discrepancies were adjusted. This was repeated until the modeled 

patterns —such as growth curves, age and size distributions, natural mortality levels, and 

fecundity measures—resembled the natural patterns observed for Atlantic cod. All model 

parameters are listed in Tables 1 and 3. Fig. 1D shows sample time series of the population-

level inter-annual noise E ( )te  affecting resource acquisition. The corresponding sample 

growth trajectories and annual fecundities are shown in Fig. 1E, while Fig. 1F shows 

population biomass )(tB  and the number )(0 tN  of recruits. The average PMRN of the pre-

harvest population is shown in Fig. 1A. 
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Before harvesting was started, the modeled population was allowed to reach a stochastic 

evolutionary and ecological equilibrium, so that all genetic traits and the correlations among 

them had converged close to an evolutionarily stable strategy. This was achieved by running 

the model for several hundred thousand years before saving a population from which the 

simulations were started. During each of 50 replicate runs with different random seeds, we let 

the model again equilibrate for one hundred years before harvesting was started. In 

individual-based models, evolution is less influenced by genetic drift and individual-level 

stochasticity when a population’s size is large. Because the populations we used were large 

(around 220 000 individuals), genetic drift and other forms of historical evolutionary 

contingency are less relevant for our results than they would be for smaller populations. 

Ideally one might have wanted to start simulation from several populations, but due to the 

long computing time needed for reaching the stochastic evolutionary equilibrium, we created 

only one such population. In all figures except for Fig. 2 the harvest period was 100 years. 

There was no fishing during the subsequent recovery period. 

[Table 1 here] 

[Table 2 here] 

Non-evolutionary model 

In order to assess the consequences of evolutionary change for recovery and rebuilding, we 

created a non-evolutionary version of our model in which the genetic traits were not allowed 

to evolve. For the initial comparison in Fig. 2, we did this simply by giving each individual 

born into the non-evolving population the genetic traits of a random individual that was alive 

at the time when fishing was initiated. We first constructed a library of about 200 000 

individuals assembled in the last year of the long stabilization period without fishing; then, 

during fishing and the subsequent recovery, offspring were assigned genetic traits from this 

library. In this way, the distribution of genetic traits at birth was prevented from evolving 

under fishing. Nevertheless, the distribution of genetic traits later in life could change under 

fishing, through the differential vulnerability of genotypes to fishing. The distribution of 
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phenotypic traits later in life changed under fishing for two further reasons: through the 

effects of fishing on density and thus on the phenotypic expression of the density-dependent 

growth coefficient, and through the knock-on effects of density-dependent growth and 

recruitment altered by fishing on a stock’s length structure and thus on the differential 

vulnerability of phenotypes to fishing. 

A related challenge arises because the ecological conditions of the evolutionary model differ 

from those in the non-evolutionary model as soon as the populations are fished. This prevents 

the comparison above from satisfactorily isolating the effects of evolutionary changes on the 

recovery process, because age, size, and maturity distributions, and hence density-dependent 

feedbacks on growth and recruitment, differ among populations starting their recovery from 

different initial biomasses. To better isolate the effects of evolution on recovery (in Fig. 4 and 

Fig. 5, as opposed to Fig. 2), we therefore used four steps to scale the stock biomass of the 

non-evolving population at the beginning of the recovery period to the corresponding level of 

the evolving population, while ensuring the former population’s demographic and genetic 

composition matches its adjusted biomass. First, we determined the evolving population’s 

biomass )(TB  at the time T  at which fishing was stopped. Second, we fished the non-

evolving population with the same harvest rate and identified the year   just before it reached 

the evolving population’s target biomass )(TB . Third, we determined the non-evolving 

population’s biomasses N ( )B   and N ( 1)B    and separately stored all individuals it 

contained in those two years. Fourth, we randomly drew individuals from these two stored 

populations—complete with genetic traits and other individual traits such as length, age, and 

maturity status—until the population assembled in this way reached the target population 

biomass )(TB . During this assembly, the probability that an individual was drawn from the 

population at time   was 

 N

N N

( ) ( 1)

( ) ( 1)

B T B
P

B B


 
    ,        (15) 

while the remainder was drawn from the population at time 1 . In this way, we separately 

constructed a new non-evolving population for 50 replicate model runs. 
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Results 

To quantify the impact of evolution on recovery, we compared responses in the biomasses of 

evolving and non-evolving populations to fishing and a subsequent moratorium (Fig. 2), 

investigated the corresponding evolution of genetic traits (Fig. 3), and analyzed the 

differential dynamics of evolving and non-evolving populations that were of equal biomass at 

the recovery’s start (Fig. 4), with a special focus on identifying differences in recovery times 

(Fig. 5). 

We found that increased harvest, in terms of intensity or duration, magnified the evolutionary 

response of the harvested stock. This can be seen by comparing time series of total biomass 

for the evolving population with its hypothetical non-evolving counterpart (Fig. 2). The 

evolutionary response involved adaptations in the genetic traits that allowed the evolving 

population to better withstand fishing during the harvested phase; these adaptations persisted 

after harvesting had ceased. Since the evolving population adapted to the harvest, its biomass 

began to rebound after the initial drop, whereas the non-evolving population declined 

monotonically as long as it was harvested. 

One consequence of fisheries-induced evolution is that populations that adapted to the new 

mortality regime could withstand considerably higher fishing pressures than if evolution was 

not occurring. While the hypothetical non-evolving populations went extinct for harvest rates 

exceeding 0.5 year–1, the evolving populations acquired a capacity for withstanding 

considerably higher harvest rates. However, even though fisheries-induced evolution 

appeared to make populations more resistant to extinction, the flip side of adaptation was seen 

when the harvest pressure was removed. Although starting recovery from a higher biomass, 

the evolving populations could not fully recover to the pre-harvest level within the recovery 

period of 350 years shown in Fig. 2. This lag effect was the more pronounced the more 

intense and prolonged a population’s exposure to fishing had been. 

[Figure 2 here] 
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The capacity of evolving populations to withstand higher harvest pressure was due to 

evolution of their genetic traits. The most prominent evolutionary change took place in the 

maturation schedule, and in the PMRN intercept in particular (Fig. 3A). The PMRN also 

evolved to become more steeply inclined during harvesting (Fig. 3B), the gonado-somatic 

index evolved to higher values (meaning that individuals invested progressively more of their 

resources into reproduction; Fig. 3C), and the growth coefficient evolved to lower values (Fig. 

3D). The higher the harvest pressure, the larger the magnitude of the evolutionary response. 

In all genetic traits, recovery was slower than the preceding harvest-induced changes. Since 

the heritabilities of genetic traits did not change significantly over time, this implies that the 

natural selection pressures reverting the genetic traits during the moratorium were weaker 

than the preceding fisheries-induced selection pressures. 

[Figure 3 here] 

Harvesting changed a range of stock characteristics in the evolving and non-evolving 

populations, including those commonly used for quantifying biomass, recruitment, 

maturation, and growth (Fig. 4). Although the genetic growth coefficient evolved to lower 

values (Fig. 3D), the phenotypic growth rate increased due to relaxed density regulation (Fig. 

4G). This finding underscores the importance of considering phenotypic plasticity and density 

dependence when modeling fisheries-induced evolution, or when interpreting observed 

empirical changes in the light of fisheries-induced evolution, as phenotypic plasticity and 

density dependence can both mask and exaggerate fisheries-induced changes in a stock’s 

genetic composition. 

As evolution changes a population’s genetic traits, it also affects population dynamics and 

biomass variation (Fig. 4). A naïve comparison of evolving and non-evolving populations, 

such as in Fig. 2, thus cannot separate the effects of evolution from the effects of phenotypic 

plasticity and density dependence, because the recovery processes of the evolving and non-

evolving populations start from different population biomasses after harvesting. We 

eliminated this confounding factor by rescaling the non-evolving population’s biomass to the 

same level observed for the evolving population at the end of the harvesting period (see ‘Non-



21 

 

evolutionary model’ under ‘Methods’ above). Initiating the recovery of evolving and non-

evolving populations from the same biomass revealed that fisheries-induced evolution had 

little influence on the recovery of population biomass during the moratorium’s first 15 years 

(Fig. 4A). However, after this initial period, the evolving population took hundreds of years to 

fully recover to its pre-harvest biomass level. In contrast, the hypothetical non-evolving 

populations were fully recovered within about 50 years. 

The recovery of some stock characteristics was faster for populations that had undergone 

fisheries-induced evolution. For example, spawning stock biomass increased more rapidly 

during the moratorium, because individuals were maturing earlier as a result of fisheries-

induced evolution. Likewise, when harvesting ceased, spawning stock biomass in the 

evolving population exceeded its pre-harvest level, because a larger part of the population was 

mature and thus contributed to the spawning stock (Fig. 4B). At the same time, the number of 

eggs per spawner and the number of recruits per spawner decreased considerably due to 

fisheries-induced evolution, because mature individuals were on average smaller (Fig. 4C,D). 

Furthermore, the recovery of these metrics was extremely slow, and there was little short-term 

recovery. In contrast, the non-evolving populations showed a demographic increase in the 

number of eggs and recruits per spawner at the beginning of the recovery period, because the 

number of old and large individuals increased when harvesting was ceased. With time, 

density dependence began to kick in and reproduction thus fell to pre-harvest levels. The 

initial demographic increase and subsequent density-dependent decrease in reproductive traits 

were also present, albeit less pronounced, in the evolving populations. 

The average age at maturation is one of the stock characteristics that responded most strongly 

to fishing. The reason for this is threefold: first, evolution of the PMRN increases the 

probability of maturation for smaller individuals at younger ages; second, released density 

dependence increases growth and thus allows fish to reach sizes at which they are more likely 

to mature early in life; and third, population-level averages of age at maturation are based on 

live fish and therefore are biased toward early maturation, because harvest removes fish that 

otherwise would have matured late in life. In Fig. 4, the evolving populations exhibited all 



22 

 

three effects, whereas the non-evolving populations underwent only the latter two effects (Fig. 

4E). Even though the average age at maturation decreased in the non-evolving populations, 

the decline was smaller and the recovery to the pre-harvest level was considerably quicker 

(Fig. 4E). 

The average length at maturation decreased dramatically due to fisheries-induced evolution 

and recovered very slowly thereafter, whereas in the non-evolving populations it not only 

decreased less during fishing, but also rebounded to its pre-harvest level within just a few 

years (Fig. 4F). For a PMRN with significantly negative slope, one would expect that faster 

growth leads to earlier maturation at larger size when everything else is unchanged. In the 

non-evolving populations, however, (i) average maturation length at the end of the fishing 

period lies below its pre-harvest value even though individuals grow faster during the fishing 

period, and (ii) average maturation length increases during the early phase of recovery even 

though growth rates go down concomitantly. Both points seemingly contradict expectations 

based on the PMRN slope. The contradiction is only apparent, as late- and large-maturing 

individuals were more exposed to fishing, resulting in a bias toward fish that are smaller at 

maturation. When fishing pressure was released, this bias vanished, and the average length at 

maturation quickly increased. Thereafter, the average length at maturation slowly decreased 

again together with the decreasing average growth rate and thus in line with expectations 

based on the PMRN slope. 

The average length increment of 2-year-old individuals was only minimally influenced by 

fisheries-induced evolution (Fig. 4G). This early age was chosen to avoid the confounding 

effects resulting from maturation evolution and the associated changes in resource allocation 

to gonads. Although the growth coefficient evolved to lower values during harvesting (Fig. 

3D), the length increment of 2-year-old individuals increased slightly and decreased relatively 

quickly to the pre-harvest level as population density increased. This weak effect of growth 

evolution on body length can also be seen at other ages: length at age 3 years decreased little 

due to evolution, and although length at age 10 years showed a dramatic response, this was 

mainly due to maturation evolution (Fig. 4H). In the non-evolving populations, the average 



23 

 

length at age 10 years increased during the harvesting period because of the release of density 

dependence acting on growth. In contrast, fisheries-induced evolution led to a smaller length 

at age 10 years, because individuals evolved to mature earlier in life, so that their growth 

slowed down as part of their resources were used for reproduction (Fig. 1E). The recovery of 

the length at age 10 years was very slow in the evolved populations, reflecting the slow 

evolutionary recovery of the maturation schedule. 

[Figure 4 here] 

Increased harvest pressure led to longer recovery times. We quantified this as the time it took 

a population to reach 50%, 70%, and 90% of its pre-harvest levels of biomass, number of 

recruits, and average age at maturation (Fig. 5). Biomass recovery to 50% and 70% of the pre-

harvest level was not strongly influenced by fisheries-induced evolution, whereas recovery to 

90% of the pre-harvest level took roughly ten times longer when the population had adapted 

to fishing (Fig. 5A,B). Recruitment, on the other hand, recovered faster when the population 

had evolved: the fish matured earlier and made higher reproductive investments, and the 

resultant number of recruits was also larger. As a consequence, the recovery time to pre-

harvest levels of recruitment was shorter for evolved populations than for non-evolved 

populations (Fig. 5C,D). Recovery of the average age at maturation was strongly affected by 

fisheries-induced evolutionary changes (Fig. 5E,F). Recovery to 70% of the pre-harvest 

maturation age took more than 300 years when harvest rates had exceeded 0.5 year–1, and 

recovery to 90% of the pre-harvest maturation age could take more than a thousand years 

(Fig. 5E). In the hypothetical non-evolving populations, age at maturation recovered to 90% 

of its pre-harvest level within less than 40 years (Fig. 5F), and it never fell below 80% of its 

pre-harvest level (not shown). 

[Figure 5 here] 
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Discussion 

Our results show that evolutionary life-history changes caused by fishing do affect recovery, 

as has previously been suggested by some authors (Hutchings 2005; Walsh et al. 2006; 

Stenseth and Dunlop 2009). Below we discuss these impacts, explain their origin, consider 

limitations of our analysis, and highlight management implications. 

Evolutionary impacts on recovery 

A fish stock’s recovery after a period of exploitation is a multifaceted process involving 

numerous traits, during which the different traits recover at different rates and to different 

levels. Even though the rebuilding of population biomass is not strongly influenced by 

fisheries-induced evolution during the first 10-15 years of recovery, it can take dramatically 

longer to reach pre-harvest levels of biomass when evolution has taken place. On the other 

hand, our model predictions suggest that some traits, such as spawning stock biomass and 

recruitment, recover faster after evolution, and that the adaptations to high mortality rates 

make a stock less prone to extinction during intense fishing. 

Atlantic cod is an illustrative example of a species that has experienced periods of declines 

and recoveries over its whole distributional range (reviewed by Lilly et al. 2008). Having 

been fished down to fractions of their pristine biomass, some stocks appear to experience 

great difficulty in recovering from their depleted state. Most infamous is the collapse and non-

recovery of the northern cod off Newfoundland (e.g., Haedrich and Hamilton 2000; Shelton et 

al. 2006), but also the southern Gulf of St Lawrence cod and North Sea cod are at historical 

lows, with good news being few and far between. For southern Gulf of St Lawrence cod, the 

situation is so grave that this stock has been predicted to be extirpated within mere decades 

(Swain and Chouinard 2008). All of these cod stocks have shown life-history changes that 

have partly been attributed to fisheries-induced evolution (Olsen et al. 2004; Yoneda and 

Wright 2004; Olsen et al. 2005; Swain et al. 2007; see also Pérez-Rodríguez et al. this issue 

for Flemish cap cod). 
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Similar evolutionary changes induced by fishing have taken place in numerous other fish 

populations worldwide (reviewed in e.g., Jørgensen et al. 2007; Kuparinen and Merilä 2007; 

Fenberg and Roy 2008; Hutchings and Fraser 2008). Before we can use our model to examine 

what implications such fisheries-induced evolutionary changes have for stock recovery, we 

need to ascertain that the predictions of harvest-induced changes from this model are 

consistent with empirical observations and theoretical results from other models. That fishing 

leads to earlier maturation has been suggested or shown in several models, with the earliest 

examples being Borisov (1978) and Law and Grey (1989), while the model with a 

methodology most similar to ours is Dunlop et al. (2009). Our study predicts a drop in age at 

maturation of 3 years after 100 years of harvesting at a rate of 0.3 year–1 and of 5 years for a 

harvest rate of 0.7 year–1. In comparison, the change in age at maturation observed in 

Northeast Arctic cod is 2.5 years over 70 years, under harvest rates of around 0.5 year–1 

(Heino et al. 2002b). Further studies of the evolution of maturation age and size were 

reviewed by Dieckmann and Heino (2007), but there appear to be no other examples of late-

maturing stocks with sufficiently long time series to enable similar comparisons. However, 

the rate of change in Northeast Arctic cod, as measured in darwins, is within the range of rates 

observed in numerous other species worldwide (reviewed in Jørgensen et al. 2007). The 

concomitant evolution of increased reproductive investment is also supported by model 

results (Jørgensen et al. 2006; Dunlop et al. 2009) and empirical observations (Yoneda and 

Wright 2004; Rijnsdorp et al. 2005; Wright 2005). Reduced growth rates in response to 

harvesting have been shown most unambiguously in pink salmon, where maturation age is 

constant (Ricker 1981; Ricker 1995), and experimentally in Atlantic silversides (Conover and 

Munch 2002), but a weaker effect more in line with our model’s predictions has been reported 

in data on plaice and cod (Rijnsdorp et al. 2005; Swain et al. 2007) and in other models 

(Favro et al. 1979; Brown et al. 2008; Hilborn and Minte-Vera 2008; Dunlop et al. 2009). 

Based on these comparisons with theory and observations, we conclude that the harvest-

induced changes our model predicts are within the expected range and therefore pertinent to 

considerations of empirical recovery processes. 
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The effect of evolution on observed phenotypes and population dynamics depends on the 

timescale of interest. At short and medium timescales (years to decades), the primary role of 

evolutionary trait changes is that they alter population dynamics and thereby the ‘rules of the 

game’ for stock recovery. Some stock characteristics recover faster, some slower, and some 

incompletely, due to the evolutionary changes that took place while the stock was harvested. 

On longer timescales (decades to centuries), the evolution of genetic traits back to their pre-

harvest levels may take considerably longer, as reverse selection pressures will often be weak. 

The interconnected processes and diverse dynamics of different stock characteristics paint a 

more nuanced picture than the words ‘recovery’ or ‘rebuilding’ suggest, especially when 

considering the way these concepts are used in the non-scientific literature. For example, the 

Johannesburg Declaration states that to achieve sustainable fisheries, the requirement is to 

‘maintain or restore stocks to levels that can produce the maximum sustainable yield with the 

aim of achieving these goals for depleted stocks on an urgent basis and where possible not 

later than 2015’ (UN 2002). The text is, perhaps deliberately, unclear on how the ‘levels that 

can produce the maximum sustainable yield’ are to be defined. For fisheries scientists and 

managers devising rebuilding plans and monitoring recoveries, an operational definition of 

this objective is needed. Below, we point to some of the processes at work during recovery 

and rebuilding that impinge on this question, and show how expectations for recovery depend 

on the stock characteristic at focus and on the processes that led to depletion or overfishing. 

Three processes with different timescales 

Three processes determine the recovery of different stock characteristics. These processes act 

on top of each other, and each one of them dominates on different timescales. Distinguishing 

these processes helps us understand the biological dynamics that influence stock recoveries 

from a depleted state. 

First, when fishing is ceased, fish that previously would have been harvested will survive and 

influence population dynamics. This is seen as an increase in biomass, but also as rapid 

increases in recruits per spawner, mean age and size, and mean age and size at maturation. 
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These effects result from the restoration of an age and size structure in which cohorts are 

dying off at a slower rate. This restoration is observed in terms of very rapid initial recoveries 

of most of the stock characteristics shown in Fig. 4. 

Second, as population density and/or total biomass increase, density-dependent effects begin 

to alter the phenotypic composition of the population by affecting, in particular, individual 

rates of growth and reproduction. It can be instructive to think of this effect as having two 

components: ageing individuals that survived until fishing ceased gradually find themselves 

in a denser population that decelerates their growth and reproduction, while new cohorts 

spawned under higher densities will grow slower also early in life, thus exhibiting different 

adult characteristics than their parents. Such density dependence and phenotypic plasticity 

cause several of the stock characteristics in Fig. 4 to show a slow decline after a fast increase: 

for biomass this is hardly visible, but for reproductive traits, age and size at maturation, and 

length at age, this decrease can be pronounced. For the number of recruits per spawner, the 

influence of increasing density dependence is even stronger than the initial increase due to the 

restoration of age and size structure. When monitoring a stock’s recovery, an initial rapid and 

promising restoration of population structure can thus be overturned as population dynamics 

become dominated by density regulation. 

Third, the slowest process is evolution of the genetic traits toward their pre-harvest levels. 

Some of the genetic trait changes that were induced by fishing evolve much slower in the 

opposite direction. This was suggested by Law and Grey (1989), who noted that selection 

pressures toward early maturation during fishing can be very strong, as most late-maturing 

individuals die before they can reproduce, whereas many early-maturing individuals can 

reproduce at least once. When fishing is ceased, both early- and late-maturing individuals can 

reproduce, but the late-maturing phenotypes will produce slightly more offspring, as they 

follow fine-tuned resource allocation strategies that maximize their lifetime reproductive 

success under conditions of natural mortality. Although evolution by natural selection thus 

gradually moves the population toward later maturation, this process can be very slow. A first 

quantitative corroboration of this asymmetry in the context of a detailed eco-genetic model 
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was provided by Dunlop et al. (2009). Our results show that similar asymmetries between the 

rates of fisheries-induced evolution and reverse evolution when fishing is relaxed can occur 

also for other traits. In our model, it took natural selection thousands of years without fishing 

to undo genetic changes caused by only a century of harvesting. 

Our model does not, however, support predictions by de Roos et al. (2006), who found that 

fisheries-induced evolution toward smaller maturation size could be irreversible and even 

continue despite a cessation of fishing. We believe their results could be a consequence of 

phenology in seasonal environments, where fitness valleys associated with annual cycles may 

prevent genetic traits from recovering. A decade-long experimental study by Conover et al. 

(2009) supports the reversibility of evolutionary changes in life-history traits caused by 

harvesting. Their study showed, however, that the rate of evolutionary recovery depended on 

the harvest regime: large-harvested populations, which evolved toward smaller body size 

during a selective-harvesting period of five generations, showed significant recovery during a 

subsequent non-harvesting period of five generations. In contrast, small-harvested 

populations, which evolved toward larger body size during selection, showed no significant 

evolutionary reversal after harvesting was ceased (Conover et al. 2009). 

Model limitations 

Our model population represents a long-lived and late-maturing species exposed to a specific 

harvest regime. How well it can capture the essence of recovery and rebuilding dynamics in 

populations harvested differently (e.g., less size-selectively) or in populations with different 

life histories (e.g., short-lived and early-maturing species) remains to be assessed by future 

work. Our model also included only a limited number of evolving traits. In contrast, Walsh et 

al. (2006) found in laboratory experiments with Atlantic silversides that when large 

individuals were selectively harvested, a suite of physiological, behavioral, developmental, 

and life-history traits were altered, many of which can affect a stock’s recovery potential. For 

example, egg volume was reduced, leading to smaller larval size at hatching and to lower 

viability of the larvae. Also, food consumption rate and conversion efficiency decreased. In 

addition, models have studied traits that are difficult to manipulate in the lab, including 
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migration patterns (Jørgensen et al. 2008; Thériault et al. 2008) and skipped spawning 

(Jørgensen et al. 2006). Including more traits into a model might lead to different evolutionary 

responses during the harvesting phase, with other consequences for recovery dynamics when 

harvesting is ceased. 

Four mechanisms that were not included in our model but are likely to affect recovery and 

rebuilding are parental effects, Allee effects, sexual selection, and trophic interactions. 

Younger and smaller females are often inferior spawners compared to their older and bigger 

counterparts, with a lower hatching rate of eggs and reduced offspring survival due to smaller 

egg size (Trippel 1998; Berkeley et al. 2004). Parental care has been shown to affect fisheries-

induced maturation evolution in an eco-genetic model of smallmouth bass (Dunlop et al. 

2007). Allee effects may arise from intraspecific or interspecific interactions and may cause 

delays in recovery (Shelton and Healey 1999). Allee effects might also emerge from fisheries-

induced changes in food-web structure (Van Leeuwen et al. 2008). Sexual selection has been 

hypothesized to influence the course and rate of fisheries-induced evolution (Hutchings and 

Rowe 2008b; Hutchings and Rowe 2008a; Urbach and Cotton 2008), and the inclusion of 

males and of more elaborate mating structures in the model might indeed affect the ecological 

and evolutionary recovery process. Removal of top predators may have led to trophic 

cascades in formerly cod-dominated ecosystems in the Northwest Atlantic (Frank et al. 2005), 

and changes in ecosystem structure have also been suggested to contribute to the non-

recovery of the cod populations there. Our model ignores interspecific interactions, and as a 

consequence, the rate of population recovery observed in our study might differ from what 

could be expected if a whole ecosystem or a subset of it were modeled (Gårdmark et al. 

2003). 

Management implications of slow evolutionary recovery 

The fact that reverse evolution is slower than fisheries-induced evolution—in our model it 

may take 20-30 times longer to bring a trait back to its pre-harvest level—has been referred to 

as causing a ‘Darwinian debt’ we impose on our descendants through current fishing practices 

(U. Dieckmann in an interview with the Financial Times 29 August 2004, page 1). If these 
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asymmetric rates in our model are representative, we might have to accept effects of past 

fisheries-induced evolution as unavoidable characteristics of a new reality. Below we discuss 

three implications. 

If fisheries-induced evolution is deemed undesirable, proactive management should attempt to 

prevent future fisheries-induced evolution (for considerations of FIE caused by different gear 

types see Hutchings this issue; Jørgensen et al. this issue). Implementing such proactive 

management requires a more informed and rigorous understanding of potential trait changes 

and their effects in specific stocks. It would also require a management process that can 

identify undesirable outcomes and enact and enforce regulations that prevent them from 

happening. In reality, recovery planning is sometimes needed, and in these cases 

acknowledging the role of evolution can facilitate the setting of realistic goals. These goals 

may need to be specified for different time horizons, taking into account demography, 

phenotypic plasticity, and evolutionary change. 

A second implication stems from practical limitations of fisheries management, in a world in 

which widespread bycatch, illegal landings, and high-grading cannot be disregarded. For 

example, in northern cod, fishing mortality went up when a fishing moratorium was 

implemented, apparently due to low stock size, a sentinel fishery, bycatch, and range 

contraction (e.g. Shelton et al. 2006). The slow recovery of genetic traits discussed above 

results from much weaker selection pressures for reverse evolution, which implies that even 

relatively low fishing mortalities are still likely to outweigh those weak pressures and hence 

hinder recovery. Fishing regulations that engender reverse evolution may thus not be a 

practical option. Models are needed to address this question for more realistic fisheries 

scenarios including bycatch and unreported landings. 

The third implication is a need for understanding how fisheries-induced evolution changes the 

biological dynamics of stocks. The pronounced differences between evolved and non-evolved 

populations found in our study illustrate how many stock characteristics are bound to change 

as a result of fisheries-induced evolution. This may limit the utility of older observations for 

managing current stock dynamics. In consequence, management targets and reference points 
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may be changing continuously. To counteract this problem, monitoring programs could be 

modified to include other or more stock characteristics than traditional survey protocols 

suggest. Successfully tackling the three challenges outlined above would require evolutionary 

ecology to become more strongly integrated with fisheries science and management 

(Hutchings 2000b). 

To summarize, our study underlines that the recovery and rebuilding of fish stocks are 

influenced by both ecological and evolutionary processes. Although evolution has little direct 

effect during initial recovery, its indirect influences are important, because the traits that 

evolved in response to fishing affect demography and phenotypic plasticity. In the longer 

term, evolution itself also plays an important role, as full evolutionary recovery to original 

trait values can be very slow or even impractical. The slow rate of evolutionary recovery is 

reflected in the rebuilding of population biomass, leading to incomplete biomass recovery on 

intermediate timescales. 
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Table 1. Noise components considered in the model. Each listed random variable is 
drawn from a normal distribution with the shown mean and standard deviation. 
Dimensionless parameters are indicated by a ‘–’ in the unit column.  

Noise component Symbol Mean Standard deviation Unit Eq. 

Expression noise for growth coefficient g( )i  1 0.33 – 2 

Expression noise for PMRN intercept y ( )i  1 13.6 – 1* 

Expression noise for PMRN slope s( )i  1 0.18  – 1 

Expression noise for gonado-somatic index r ( )i  1 0.031 – 1* 

Inheritance noise for growth coefficient g( )i  0 0.20 2kgb  12 

Inheritance noise for PMRN intercept y ( )i  0 8.3 cm  12* 

Inheritance noise for PMRN slope s( )i  0 0.11 1yearcm  12* 

Inheritance noise for gonado-somatic index r ( )i  0 0.0189 – 12* 

Individual-level inter-annual growth noise i ( , )i t  1 0.2 – 2 

Population-level inter-annual growth noise E( )t  -0.020 0.20 – 2 

Population-level inter-annual recruitment noise R( )t  -0.005 0.10 – 13 

* Equation applies by analogy. 

Table 2. Model variables. Dimensionless variables are indicated by a ‘–’ in the unit column. 

Variable Symbol Unit Equation 

Individual length ),( tiL  cm  3, 5, 7, 9 

Individual weight ),( tiW  kg  6 

Individual fecundity ),( tiQ  – 6 

Offspring number ),(0 tin  – 11 

Genotypic growth coefficient )(ig  2kgb  2, 8 

Genotypic PMRN intercept )(iy  cm   

Genotypic PMRN slope )(is  1yearcm  1 

Genotypic gonado-somatic index )(ir  –  

Phenotypic growth coefficient ),( tiG  2kgb  2, 5 

Phenotypic PMRN intercept )(iY  cm   

Phenotypic PMRN slope )(iS  1yearcm  1 
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Phenotypic gonado-somatic index )(iR  – 5, 6 

Instantaneous predation mortality rate pm  1year  7, 8 

Instantaneous foraging mortality rate fm  1year  8 

Maximum instantaneous harvest rate maxf  1year  10 

Instantaneous harvest mortality rate ),( tiF  1year  10 

Total instantaneous mortality rate ),( tiZ  1year   
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Table 3. Model parameters. Dimensionless parameters are indicated by a ‘–’ in the unit 

column. Model parameters related to noise components are listed in Table 1. 

Parameter Symbol Value Unit Eq. Source 

Initial genetic coefficient of variation GCV  0.06 –  1 

Initial heritability 2h  0.2 –  1 

PMRN width w  20 cm  4 2 

Lower limit of maturation probability for 

defining PMRN width 

lp  0.25 – 4 3 

Upper limit of maturation probability for 

defining PMRN width 

up  0.75 – 4 3 

Exponent of allometric weight-length 

relationship 

1b  3 – 5 4 

Constant in allometric weight-length 

relationship  

1a  0.01 1kg cm b  5 4 

Exponent of allometric relationship 

between resource-acquisition rate and 

weight 

21 b  0.75 – 5 5 

Weight of a single egg 
eW  4·10–4 g  6 6 

Size-independent instantaneous natural 

mortality rate 

0m  0.1 1year   2 

Constant in size-dependent mortality 

function 

1c  2.5 2 1cm yeard 
 

7 2 

Exponent of size-dependent mortality 

function 

2d  0.75 – 7 7 

Constant in foraging-mortality function 2c  0.005 2 3kg b d  8 2 

Exponent of foraging-mortality function 3d  4.5 – 8 2 

Steepness of fisheries selectivity curve    0.2 1cm  9 8 

Length at 50% fisheries selectivity 50L  85 cm  9 8 

Strength of density dependence in growth 1d  0.25 – 14 2 
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Biomass at which )(tD  = 1 B  1.75·108 kg  14 9 

Stock-recruitment constant   0.001 – 13 10 

Stock-recruitment constant   1.13·10–8 – 13 10 

Sources: (1) Within the range reported by Gjedrem (1983), Mousseau and Roff (1987), Houle 

(1992), and Carlson and Seamons (2008). (2) Values chosen such that the life-history 

characteristics resemble those of Atlantic cod in its northern range (e.g., Heino et al. 2002b; 

Rose and Driscoll 2002; McIntyre and Hutchings 2003; Marshall et al. 2004; Olsen et al. 

2004; Olsen et al. 2005). (3) Definition of PMRN width based on quartiles. (4) Values 

obtained from www.fishbase.org. (5) Brown et al. (2004). (6) Set such that individual 

fecundity is in the range reported by Kjesbu et al. (1996). (7) Peterson and Wroblewski 

(1984); Brown et al. (2004). (8) Set to create a fisheries selectivity curve rising with 

reasonable steepness at lengths close to the length at maturation before harvesting. (9) Set 

iteratively in conjunction with stock-recruitment parameters. (10) Set to create a population of 

large yet computationally manageable size (ca. 220 000 individuals) where recruitment is 

roughly one half of the asymptotic level  /  . 
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Figure captions 

Figure 1. Functions used in the model and examples of emergent population dynamics and 

life histories at the stochastic equilibrium before harvesting. (A) The maturation 

process is governed by a probabilistic maturation reaction norm (PMRN), with the 

slope and intercept (with the vertical axis) of the p50L  curve (at which the maturation 

probability reaches 50%; continuous black line) serving as evolving traits, and with 

the PMRN width w  between the p25L  and p75L  curves (dashed lines) being kept 

constant. The average PMRN is shown together with the average growth curve (gray 

curve). (B) Individual growth is density-dependent, so that increased population 

biomass decreases the growth rate linearly. The continuous black line shows the 

corresponding dimensionless factor (Equations 2 and 14), with a thick part indicating 

the range of encountered biomasses over the 100 simulated years. (C) The number of 

recruits (at age 1 year) depends on the population’s total egg production. The 

continuous black curve shows the expected deterministic recruitment values, while 

grey dots show stochastic recruitment values. (D) A sample time series of the 

population-level inter-annual environmental noise E ( )te  that influences the resource 

intake of all individuals. (E) Growth curves and annual fecundities of three individuals 

subject to the environmental variability highlighted in gray in panel D. (F) A sample 

time series of population biomass and number of recruits. 

Figure 2. Decrease and subsequent recovery of population biomass (of individuals aged 1 year 

and older) in dependence on harvest duration (increasing from left to right) and 

instantaneous harvest rate (increasing from top to bottom). Black curves: evolutionary 

model; gray curves: non-evolutionary model; gray shading: harvesting period. For the 

highest harvest rate and the longest harvest duration (lower right corner), the non-

evolutionary population contains less than 100 individuals at its lowest population 

size, so that increasing the harvest rate further would lead to its extinction. 

Figure 3. Evolutionary dynamics of mean genetic trait values during harvesting (grey 

shading) and during a subsequent moratorium. Dynamics are shown for three different 
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instantaneous harvest rates: maxf 0.1 year–1 (light-gray curves), maxf 0.5 year–1 

(dark-gray curves), and maxf 0.9 year–1 (black curves); thinner outer curves indicate 

ranges of ±1 standard deviation. (A) Probabilistic maturation reaction norm (PMRN) 

intercept; (B) PMRN slope; (C) gonado-somatic index; (D) growth coefficient. 

Figure 4. Comparison of recovery times in the evolutionary and non-evolutionary models 

after harvesting for 100 years, when recovery was initiated from the same population 

biomass in both models (by scaling up the biomass in the non-evolutionary model to 

that of the evolutionary model). Black curves: evolutionary model; gray curves: non-

evolutionary model; thin curves: maxf 0.3 year–1; thick curves: maxf 0.7 year–1; 

dashed lines: pre-harvest levels. (A) Population biomass; (B) spawning stock biomass; 

(C) eggs per spawner; (D) recruits (aged 1 year) per spawner; (E) age at maturation; 

(F) length at maturation; (G) length increment at age 2 years; (H) lengths at ages 3 

years (below) and 10 years (above). The pre-harvest average population biomass, 

spawning stock biomass, and eggs per spawner are scaled to 1. 

Figure 5. Recovery times to 50%, 70%, and 90% of pre-harvest levels for different 

instantaneous harvest rates maxf . (A), (B) Population biomass; (C), (D) number of 

recruits; (E), (F) age at maturation; (A), (C), (E) evolutionary model; (B), (D), (F) 

non-evolutionary model. 


