20 research outputs found

    Human Amniotic Epithelial Cell Transplantation Induces Markers of Alternative Macrophage Activation and Reduces Established Hepatic Fibrosis

    Get PDF
    Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl4) twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2×106) were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively). Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established hepatic fibrosis that justifies further investigation of this potential cell-based therapy for advanced hepatic fibrosis

    Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl4-treated mice

    No full text
    Chronic liver injury and inflammation lead to hepatic fibrosis, cirrhosis, and liver failure. Embryonic and\ud mesenchymal stem cells have been shown to reduce experimental liver fibrosis but have potential limitations,\ud including the formation of dysplastic precursors, tumors, and profibrogenic cells. Other stem-like cells may\ud reduce hepatic inflammation and fibrosis without tumor and profibrogenic cell formation. To test this hypothesis\ud we transplanted human amnion epithelial cells (hAEC), isolated from term delivered placenta, into immunocompetent C57/BL6 mice at week 2 of a 4-week regimen of carbon tetrachloride (CCl4) exposure to induce liver fibrosis. Two weeks following hAEC infusion, intact cells expressing the human-specific markers inner mitochondrial membrane protein and human leukocyte antigen-G were found in mouse liver without evidence of host rejection of the transplanted cells. Human albumin, known to be produced by hAEC, was detected in sera of hAEC-treated mice. Human DNA was detected in mouse liver and also spleen, lungs, and heart of some animals. Following hAEC transplantation, CCl4-treated animals showed decreased serum ALT levels and reduced hepatocyte apoptosis, compared to controls. hAEC-treated mouse liver had lower TNF-α and IL-6 protein levels and higher IL-10 compared to animals given CCl4 alone.\ud Compared to CCl4 controls, hAEC-treated mice showed fewer activated collagen-producing hepatic stellate cells and less fibrosis area and collagen content. Reduced hepatic TGF-β levels in conjunction with a twofold increase in the active form of the collagen-degrading enzyme matrix metalloproteinase-2 in hAEC-treated\ud mice compared to CCl4 controls may account for the reduction in fibrosis. hAEC transplantation into immunocompetent mice leads to cell engraftment, reduced hepatocyte apoptosis, and decreased hepatic inflammation\ud and fibrosis

    Time-Restricted Fasting Improves Liver Steatosis in Non-Alcoholic Fatty Liver Disease—A Single Blinded Crossover Trial

    No full text
    Background: Non-alcoholic fatty liver disease (NAFLD) is associated with visceral adiposity. We assessed the effectiveness of time-restricted fasting (TRF) for 16 h daily without calorie restrictions compared to standard care (SC; diet and lifestyle advice) in improving visceral adiposity and steatosis via controlled attenuation parameter (CAP). Methods: In a prospective single-blind randomized controlled trial, 32 participants with NAFLD were randomly assigned to TRF or SC for 12 weeks. The secondary endpoints were changes in liver stiffness, anthropometry, blood pressure, and other metabolic factors. Results: Twenty-eight participants completed the first arm of the study (TRF = 14, SC = 14), with 23 completing the crossover arm (TRF = 10, SC = 13). The baseline demographics were similar between the groups. Intermittent fasting caused a significant decrease in hepatic steatosis (p = 0.038), weight (p = 0.005), waist circumference (p = 0.001), and BMI (p = 0.005) compared to standard care. Intermittent fasting also resulted in additional within-group changes that were not seen in the standard care intervention. Conclusion: TRF offers superior improvements in patients with NAFLD, improving steatosis, weight, and waist circumference despite a lack of change in overall caloric intake. Time-restricted fasting should be considered as a primary weight loss intervention in the context of NAFLD. Trial registration: ACTRN12613000935730

    Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study

    Get PDF
    Lung diseases are a major cause of global morbidity and mortality that are treated with limited efficacy. Recently stem cell therapies have been shown to effectively treat animal models of lung disease. However, there are limitations to the translation of these cell therapies to clinical disease. Studies have shown that delayed treatment of animal models does not improve outcomes and that the models do not reflect the repeated injury that is present in most lung diseases. We tested the efficacy of amnion mesenchymal stem cells (AM-MSC), bone marrow MSC (BM-MSC) and human amniotic epithelial cells (hAEC) in C57BL/6 mice using a repeat dose bleomycin-induced model of lung injury that better reflects the repeat injury seen in lung diseases. The dual bleomycin dose led to significantly higher levels of inflammation and fibrosis in the mouse lung compared to a single bleomycin dose. Intravenously infused stem cells were present in the lung in similar numbers at days 7 and 21 post cell injection. In addition, stem cell injection resulted in a significant decrease in inflammatory cell infiltrate and a reduction in IL-1 (AM-MSC), IL-6 (AM-MSC, BM-MSC, hAEC) and TNF-α (AM-MSC). The only trophic factor tested that increased following stem cell injection was IL-1RA (AM-MSC). IL-1RA levels may be modulated by GM-CSF produced by AM-MSC. Furthermore, only AM-MSC reduced collagen deposition and increased MMP-9 activity in the lung although there was a reduction of the pro-fibrogenic cytokine TGF-β following BM-MSC, AM-MSC and hAEC treatment. Therefore, AM-MSC may be more effective in reducing injury following delayed injection in the setting of repeated lung injury

    Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study

    Get PDF
    Lung diseases are a major cause of global morbidity and mortality that are treated with limited efficacy. Recently stem cell therapies have been shown to effectively treat animal models of lung disease. However, there are limitations to the translation of these cell therapies to clinical disease. Studies have shown that delayed treatment of animal models does not improve outcomes and that the models do not reflect the repeated injury that is present in most lung diseases. We tested the efficacy of amnion mesenchymal stem cells (AM-MSC), bone marrow MSC (BM-MSC) and human amniotic epithelial cells (hAEC) in C57BL/6 mice using a repeat dose bleomycin-induced model of lung injury that better reflects the repeat injury seen in lung diseases. The dual bleomycin dose led to significantly higher levels of inflammation and fibrosis in the mouse lung compared to a single bleomycin dose. Intravenously infused stem cells were present in the lung in similar numbers at days 7 and 21 post cell injection. In addition, stem cell injection resulted in a significant decrease in inflammatory cell infiltrate and a reduction in IL-1 (AM-MSC), IL-6 (AM-MSC, BM-MSC, hAEC) and TNF-\u3b1 (AM-MSC). The only trophic factor tested that increased following stem cell injection was IL-1RA (AM-MSC). IL-1RA levels may be modulated by GM-CSF produced by AM-MSC. Furthermore, only AM-MSC reduced collagen deposition and increased MMP-9 activity in the lung although there was a reduction of the pro-fibrogenic cytokine TGF-\u3b2 following BM-MSC, AM-MSC and hAEC treatment. Therefore, AM-MSC may be more effective in reducing injury following delayed injection in the setting of repeated lung injur

    A comparison of a single versus two doses of bleomycin on lung injury in C57BL/6 mice.

    No full text
    <p>There was more inflammatory infiltration at day 10 and fibrosis at day 21 post-bleomycin for double versus a single dose of bleomycin (<b>A</b>). Semi-quantitative measures of inflammatory cell infiltration and fibrosis showed significant elevation of inflammation at day 10 and fibrosis at day 21, following two bleomycin doses compared to a single dose (<b>B</b>). * p&lt;0.05.</p

    Inflammatory cells in lung tissue.

    No full text
    <p>C57BL/6 mice were given two bleomycin doses followed by cells and culled 7 days later. The score of inflammation was significantly elevated in bleomycin treated mice. Inflammatory infiltrates were lower in mice treated with AM-MSC, BM-MSC and P0 hAEC (<b>A</b>). Histological panels show CD45 stained leucocytes in lung tissue sections. The graph depicts the numbers of CD45+ cells. CD45+ leucocytes were reduced significantly following stem cell treatment (<b>B</b>). * and *** p&lt;0.05 and 0.001, respectively. Each cohort analysed consisted of n = 8 mice.</p
    corecore