8 research outputs found
Antiophidic Solanidane Steroidal Alkaloids From Solanum Campaniforme
Three new solanidane alkaloids bearing a 22,23-epoxy ring (1-3) and four known compounds were isolated from leaves of Solanum campaniforme. The structures were determined using spectroscopic techniques, including 1Dand 2D NMR, and HRESIMS experiments. The antiophidic activity of the alkaloids was tested against Bothrops pauloensis venom. Compounds 1-3 completely inhibited myotoxicity without inhibiting phospholipase A 2 activity of the venom, while hemorrhage and skin necrosis were significantly reduced in the presence of alkaloids 1 and 2. © 2011 The American Chemical Society and American Society of Pharmacognosy.741021682173Wink, M., (2003) Phytochemistry, 64, pp. 3-19Nino, J., Correa, Y.M., Mosquera, O.M., (2009) Pharm. Biol., 47, pp. 255-259Ikeda, T., Tsumagari, H., Honbu, T., Nohara, T., (2003) Biol. Pharm. Bull., 26, pp. 1198-1201Kodoru, S., Grierson, D.S., Van De Venter, M., Afolayan, A.J., (2007) Pharm. Biol., 45, pp. 613-618Sun, L., Zhao, Y., Li, X., Yuan, H., Cheng, A., Lou, H., (2010) Toxicol. in Vitro, 24, pp. 1504-151Emmanuel, S., Ignacimuthu, S., Perumalsamy, R., Amalraj, T., (2006) Fitoterapia, 77, pp. 611-612Pandurangan, A., Khosa, R.L., Hemalatha, S., (2010) J. Asian Nat. Prod. Res., 12, pp. 691-695Fenner, R., Betti, A.H., Mentz, L.A., Rates, S.M.K., (2006) Rev. Bras. Cienc. Farm., 42, pp. 369-394Harrison, R.A., Hargreaves, A., Wagstaff, S.C., Faragher, B., Lalloo, D.G., (2009) PLoS Negl. Trop. Dis., 3, p. 569Mors, W.B., Nascimento, M.C., Pereira, B.M.R., Pereira, N.A., (2000) Phytochemistry, 55, pp. 627-642Correa-Netto, C., Teixeira-Araujo, R., Aguiar, A.S., Melgarejo, A.R., De-Simone, S.G., Soares, M.R., Foguel, D., Zingali, R.B., (2010) Toxicon, 55, pp. 1222-1235Gutiérrez, J.M., Rucavado, A., Chaves, F., Díaz, C., Escalante, T., (2009) Toxicon, 54, pp. 958-975Caron, E.J., Manock, S.R., Maudlin, J., Koleski, J., Theakston, R.D., Warrell, D.A., Smalligan, R.D., (2009) Toxicon, 54, pp. 779-83Cotrim, C.A., De Oliveira, S.C., Diz Filho, E.B., Fonseca, F.V., Baldissera, Jr.L., Antunes, E., Ximenes, R.M., Toyama, M.H., (2011) Chem. Biol. Interact., 15, pp. 9-16Lomonte, B., León, G., Angulo, Y., Rucavado, A., Núñez, V., (2009) Toxicon, 54, pp. 1012-1028Coelho, R.M., Souza, M.C., Giotto, M.H.S., (1998) Phytochemistry, 49, pp. 893-897Lawson, D.R., Green, T.P., Haynes, L.W., Miller, A.R., (1997) J. Agric. Food Chem., 45, pp. 4122-4126Chiesa, F.A.F., Moyna, P., Alcaloides Esteroidales (2004) Farmacognosia: Da Planta Ao Medicamento, pp. 869-883. , In, 5 th ed. Simões, C. M. O. Schenkel, E. P. Gosmann, G. Mello, J. C. P. Mentz, L. A. Petrovick, P. R. Ed.a da UFRGS: Porto AlegreDraper, R.W., Puar, M.S., Vater, E.J., McPhail, A.T., (1998) Steroids, 63, pp. 135-140Jiang, Z.H., Wang, J.R., Li, M., Liu, Z.Q., Chau, K.Y., Zhao, C., Liu, L., (2005) J. Nat. Prod., 68, pp. 397-399Daneluttea, A.P., Costantina, M.B., Delgadob, G.E., Braz-Filho, R., Kato, M.J., (2005) J. Braz. Chem. Soc., 16, pp. 1425-1430Slimestad, R., Fossen, T., Verheul, M.J., (2008) J. Agric. Food Chem., 56, pp. 2436-2441Friedman, M., Lee, K.-R., Kim, H.-J., Lee, I.-S., Kozukue, N., (2005) J. Agric. Food Chem., 53, pp. 6162-6169Milner, S.E., Brunton, N.P., Jones, P.W., Brien, N.M.O., Collins, S.G., Maguire, A.R., (2011) J. Agric. Food Chem., 59, pp. 3454-3484Corrêa, L.C., Marchi-Salvador, D.P., Cintra, A.C.O., Sampaio, S.V., Soares, A.M., Fontes, M.R.M., (2008) Biochim. Biophys. Acta, 1784, pp. 591-599Cintra-Francischinelli, M., Pizzo, P., Angulo, Y., Gutiérrez, J.M., Montecucco, C., Lomonte, B., (2010) Toxicon, 55, pp. 590-596Montecucco, C., Ornella, R., Caccin, P., Rigoni, M., Carli, L., Morbiato, L., Muraro, L., Paoli, M., (2009) Toxicon, 54, pp. 561-564Fernandes, C.A., Marchi-Salvador, D.P., Salvador, G.M., Silva, M.C., Costa, T.R., Soares, A.M., Fontes, M.R., (2010) J. Struct. Biol., 171, pp. 31-43Silva, J.O., Fernandes, R.S., Ticli, F.K., Oliveira, C.Z., Mazzi, M.V., Franco, J.J., Giuliatti, S., Sampaio, S.V., (2007) Toxicon, 50, pp. 283-291Esmeraldino, L.E., Souza, A.M., Sampaio, S.V., (2005) Phytomedicine, 12, pp. 570-57
Anti-ophidian activity of Bredemeyera floribunda Willd. (Polygalaceae) root extract on the local effects induced by Bothrops jararacussu venom
Bredemeyera floribunda roots are popularly used to treat snakebites in the semiarid region of Northeast Brazil, and previous studies indicate the anti-ophidian actions of triterpenoid saponins found in its roots. To assess B. floribunda root extract (BFRE) activity against the effects of Bothrops jararacussu venom (BjuV), antiphospholipasic, antiproteolytic, antihemorrhagic, antinecrotic, and anti-edematogenic activities were investigated in mice. Phytochemical analysis revealed the presence of saponins, flavonoids, and sugars, with rutin and saccharose being the major constituents of BFRE. Acute toxicity was determined and BFRE was nontoxic to mice. Phospholipase A2 and proteolytic activities induced by BjuV were inhibited in vitro by BFRE at all concentrations tested herein. BFRE (150 mg/kg) inhibited paw edema induced by BjuV (50 µg/animal), reducing total edema calculated by area under the curve, but carrageenan-induced paw edema was unchanged. Hemorrhagic and necrotizing actions of BjuV (50 µg/animal) were considerably decreased by BFRE treatment. Thus, BFRE blocked the toxic actions of B. jararacussu venom despite having no anti-inflammatory activity, which points to a direct inhibition of venom’s toxins, as demonstrated in the in vitro assays. The larger amounts of rutin found in BFRE may play a role in this inhibition, since 3′,4′-OH flavonoids are known inhibitors of phospholipases A2
Características da carcaça de bovinos de quatro grupos genéticos submetidos a dietas com ou sem adição de gordura protegida Carcass characteristics of bovines from four genetic groups fed diets with or without protected fat
Com o objetivo de avaliar o rendimento e as características de carcaça de quatro grupos genéticos de bovinos, foram abatidos 32 animais machos inteiros, dos grupos Nelore (N), F1 Canchim x Nelore (CN), F1 Limousin x Nelore (LN) e F1 Aberdeen Angus x Nelore (AN), com idade aproximada de 19 meses e peso vivo médio de 558 kg, terminados em regime de confinamento, recebendo dietas com ou sem adição de gordura protegida, durante 166 dias. O delineamento experimental utilizado foi inteiramente casualizado, com quatro repetições, seguindo esquema fatorial 2 x 4 (dieta, grupo genético). Observou-se efeito do grupo genético sobre o rendimento de cortes primários, tendo o grupo AN apresentado as maiores médias de dianteiro (41,65%) e ponta de agulha (13.90%) e o grupo LN, o maior rendimento de traseiro (47,40%). A área de olho de lombo (AOL) sofreu efeito da dieta, apresentando médias de 81,31 cm² vs. 88,50cm², para as dietas sem e com gordura protegida, respectivamente. A composição física da carcaça foi influenciada pelo grupo genético, tendo o grupo LN apresentado a maior porcentagem de músculo (63,62%) e a menor porcentagem de tecido adiposo (21,65%), enquanto o grupo Nelore apresentou a maior porcentagem de tecido adiposo (28,28%) e menor porcentagem de músculo (56,76%). A composição química da seção HH sofreu efeito do grupo genético, tendo sido observados os maiores teores de proteína bruta nos grupos LN (27,24%) e CN (26,10%) e de extrato etéreo no grupo Nelore (68,35%), que não diferiu do grupo AN (68,02%). Os menores teores de Ca, P e Mg (2,62; 1,32; e 0,081%) foram observados no grupo Nelore.<br>The objective of this experiment was to evaluate the yield and carcass characteristics of steers from the following four genetic group: Nellore (N), F1 Canchim x Nellore (CN), F1 Limousin x Nellore (LN) and F1 Aberdeen Angus x Nellore (NA). For this purpose, 32 steers, with age of 19 months and live weight average of 558 kg, raised in confinement and fed diet with and without protected fat for 166 days, were slaughtered. A completely randomized design, with four replicates, following a factorial scheme of 2 x 4 (diet, genetic group), was used. The effect of genetic group was observed on the prime cuts yield and the group NA presented the greatest yield means of the hindquarter (41.65%) and spare ribs (13.90%) and the group LN presented a greater yield of forequarter (47.40%). The loin eye area (AOL) was affected by the diet, showing means of 81.31 cm² vs. 88.50 cm² in the diets without and with protected fat, respectively. The physical composition of the carcass was affected by the genetic group, and the group LN showed the greatest percentage of muscle (63.62%) and the lowest percentage of fat tissue (21.65%), while the group Nellore showed the greatest percentage of fat tissue (28.28%) and the lowest percentage of muscle (56.76%). The chemical composition of the HH section was affected by the genetic group, and the greatest contents of crude protein were observed in the groups LN (27.24%) and CN (26.10%), and the ether extract in the group Nellore (68.35%), that did not differ form the AN (68.02%). The lowest contents of Ca, P and Mg (2.62; 1.32 and 0.081%) were observed in the group Nellore