408 research outputs found

    Stability of parallel/perpendicular domain boundaries in lamellar block copolymers under oscillatory shear

    Full text link
    We introduce a model constitutive law for the dissipative stress tensor of lamellar phases to account for low frequency and long wavelength flows. Given the uniaxial symmetry of these phases, we argue that the stress tensor must be the same as that of a nematic but with the local order parameter being the slowly varying lamellar wavevector. This assumption leads to a dependence of the effective dynamic viscosity on orientation of the lamellar phase. We then consider a model configuration comprising a domain boundary separating laterally unbounded domains of so called parallel and perpendicularly oriented lamellae in a uniform, oscillatory, shear flow, and show that the configuration can be hydrodynamically unstable for the constitutive law chosen. It is argued that this instability and the secondary flows it creates can be used to infer a possible mechanism for orientation selection in shear experiments.Comment: 26 pages, 10 figure

    Orientation selection in lamellar phases by oscillatory shears

    Full text link
    In order to address the selection mechanism that is responsible for the unique lamellar orientation observed in block copolymers under oscillatory shears, we use a constitutive law for the dissipative part of the stress tensor that respects the uniaxial symmetry of a lamellar phase. An interface separating two domains oriented parallel and perpendicular to the shear is shown to be hydrodynamically unstable, a situation analogous to the thin layer instability of stratified fluids under shear. The resulting secondary flows break the degeneracy between parallel and perpendicular lamellar orientation, leading to a preferred perpendicular orientation in certain ranges of parameters of the polymer and of the shear.Comment: 4 pages, 3 figure

    Lattice-Ordered Algebras That are Subdirect Products of Valuation Domains

    Get PDF
    An f-ring (i.e., a lattice-ordered ring that is a subdirect product of totally ordered rings) A is called an SV-ring if A/P is a valuation domain for every prime ideal P of A. If M is a maximal ℓ-ideal of A , then the rank of A at M is the number of minimal prime ideals of A contained in M, rank of A is the sup of the ranks of A at each of its maximal ℓ-ideals. If the latter is a positive integer, then A is said to have finite rank, and if A = C(X) is the ring of all real-valued continuous functions on a Tychonoff space, the rank of X is defined to be the rank of the f-ring C(X), and X is called an SV-space if C(X) is an SV-ring. X has finite rank k iff k is the maximal number of pairwise disjoint cozero sets with a point common to all of their closures. In general f-rings these two concepts are unrelated, but if A is uniformly complete (in particular, if A = C(X)) then if A is an SV-ring then it has finite rank. Showing that ihis latter holds makes use of the theory of finite-valued lattice-ordered (abelian) groups. These two kinds of rings are investigated with an emphasis on the uniformly complete case. Fairly powerful machinery seems to have to be used, and even then, we do not know if there is a compact space X of finite rank that fails to be an SV-space

    Shear-thickening and entropy-driven reentrance

    Full text link
    We discuss a generic mechanism for shear-thickening analogous to entropy-driven phase reentrance. We implement it in the context of non-relaxational mean-field glassy systems: although very simple, the microscopic models we study present a dynamical phase diagram with second and first order stirring-induced jamming transitions leading to intermittency, metastability and phase coexistence as seen in some experiments. The jammed state is fragile with respect to change in the stirring direction. Our approach provides a direct derivation of a Mode-Coupling theory of shear-thickening.Comment: 4 pages, 4 figures, minor changes, references adde

    The scale-free character of the cluster mass function and the universality of the stellar IMF

    Full text link
    Our recent determination of a Salpeter slope for the IMF in the field of 30 Doradus (Selman and Melnick 2005) appears to be in conflict with simple probabilistic counting arguments advanced in the past to support observational claims of a steeper IMF in the LMC field. In this paper we re-examine these arguments and show by explicit construction that, contrary to these claims, the field IMF is expected to be exactly the same as the stellar IMF of the clusters out of which the field was presumably formed. We show that the current data on the mass distribution of clusters themselves is in excellent agreement with our model, and is consistent with a single spectrum {\it by number of stars} of the type nβn^\beta with beta between -1.8 and -2.2 down to the smallest clusters without any preferred mass scale for cluster formation. We also use the random sampling model to estimate the statistics of the maximal mass star in clusters, and confirm the discrepancy with observations found by Weidner and Kroupa (2006). We argue that rather than signaling the violation of the random sampling model these observations reflect the gravitationally unstable nature of systems with one very large mass star. We stress the importance of the random sampling model as a \emph{null hypothesis} whose violation would signal the presence of interesting physics.Comment: 9 pages emulateap

    Shear induced grain boundary motion for lamellar phases in the weakly nonlinear regime

    Full text link
    We study the effect of an externally imposed oscillatory shear on the motion of a grain boundary that separates differently oriented domains of the lamellar phase of a diblock copolymer. A direct numerical solution of the Swift-Hohenberg equation in shear flow is used for the case of a transverse/parallel grain boundary in the limits of weak nonlinearity and low shear frequency. We focus on the region of parameters in which both transverse and parallel lamellae are linearly stable. Shearing leads to excess free energy in the transverse region relative to the parallel region, which is in turn dissipated by net motion of the boundary toward the transverse region. The observed boundary motion is a combination of rigid advection by the flow and order parameter diffusion. The latter includes break up and reconnection of lamellae, as well as a weak Eckhaus instability in the boundary region for sufficiently large strain amplitude that leads to slow wavenumber readjustment. The net average velocity is seen to increase with frequency and strain amplitude, and can be obtained by a multiple scale expansion of the governing equations

    Does Turbulent Pressure Behave as a Logatrope?

    Full text link
    We present numerical simulations of an isothermal turbulent gas undergoing gravitational collapse, aimed at testing for ``logatropic'' behavior of the form PtlogρP_t \sim \log \rho, where PtP_t is the ``turbulent pressure'' and ρ\rho is the density. To this end, we monitor the evolution of the turbulent velocity dispersion σ\sigma as the density increases during the collapse. A logatropic behavior would require that σρ1/2\sigma \propto \rho^{-1/2}, a result which, however, is not verified in the simulations. Instead, the velocity dispersion increases with density, implying a polytropic behavior of PtP_t. This behavior is found both in purely hydrodynamic as well as hydromagnetic runs. For purely hydrodynamic and rapidly-collapsing magnetic cases, the velocity dispersion increases roughly as σρ1/2\sigma \propto \rho^{1/2}, implying Ptρ2P_t\sim \rho^2, where PtP_t is the turbulent pressure. For slowly-collapsing magnetic cases the behavior is close to σρ1/4\sigma \propto \rho^{1/4}, which implies Ptρ3/2P_t \sim \rho^{3/2}. We thus suggest that the logatropic ``equation of state'' may represent only the statistically most probable state of an ensemble of clouds in equilibrium between self-gravity and kinetic support, but does not adequately represent the behavior of the ``turbulent pressure'' within a cloud undergoing a dynamic compression due to gravitational collapse. Finally, we discuss the importance of the underlying physical model for the clouds (in equilibrium vs. dynamic) on the results obtained.Comment: Accepted in ApJ. 10 pages, 3 postscript figure

    The Life and Death of Dense Molecular Clumps in the Large Magellanic Cloud

    Full text link
    We report the results of a high spatial (parsec) resolution HCO+ (J = 1-0) and HCN (J = 1-0) emission survey toward the giant molecular clouds of the star formation regions N105, N113, N159, and N44 in the Large Magellanic Cloud. The HCO+ and HCN observations at 89.2 and 88.6 GHz, respectively, were conducted in the compact configuration of the Australia Telescope Compact Array. The emission is imaged into individual clumps with masses between 10^2 and 10^4 solar masses and radii of <1 pc to ~2 pc. Many of the clumps are coincident with indicators of current massive star formation, indicating that many of the clumps are associated with deeply-embedded forming stars and star clusters. We find that massive YSO-bearing clumps tend to be larger (>1 pc), more massive (M > 10^3 solar masses), and have higher surface densities (~1 g cm^-2), while clumps without signs of star formation are smaller (<1 pc), less massive (M < 10^3 solar masses), and have lower surface densities (~0.1 g cm^-2). The dearth of massive (M >10^3 solar masses) clumps not bearing massive YSOs suggests the onset of star formation occurs rapidly once the clump has attained physical properties favorable to massive star formation. Using a large sample of LMC massive YSO mid-IR spectra, we estimate that ~2/3 of the massive YSOs for which there are Spitzer mid-IR spectra are no longer located in molecular clumps; we estimate that these young stars/clusters have destroyed their natal clumps on a time scale of at least 3 x 10^{5}$ yrs.Comment: Accepted to ApJ 3-19-201
    corecore