47 research outputs found

    Radical-containing particles activate dendritic cells and enhance Th17 inflammation in a mouse model of asthma

    Get PDF
    We identified a previously unrecognized component of airborne particulate matter (PM) formed in combustion and thermal processes, namely, environmentally persistent free radicals (EPFRs). The pulmonary health effects of EPFRs are currently unknown. In the present study, we used a model EPFR-containing pollutant-particle system referred to as MCP230. We evaluated the effects of MCP230 on the phenotype and function of bone marrow - derived dendritic cells (BMDCs) in vitro and lung dendritic cells (DCs) in vivo, and the subsequent T-cell response. We also investigated the adjuvant role of MCP230 on airway inflammation in a mouse model of asthma. MCP230 decreased intracellular reduced glutathione (GSH) and the GSH/oxidized glutathione ratio in BMDCs, and up-regulated the expression of costimulatory molecules CD80 and CD86 on DCs. The maturation of DCs was blocked by inhibiting oxidative stress or the uptake of MCP230. BMDCs exposed to MCP230 increased their antigen-specific T-cell proliferation in vitro. In a model of asthma, exposure to MCP230 exacerbated pulmonary inflammation, which was attributed to the increase of neutrophils and macrophages but not eosinophils. This result correlated with an increase in Th17 cells and cytokines, compared with non - MCP230-treated but ovalbumin (OVA) - challenged mice. The percentage of Th2 cells was comparable between OVA and OVA + MCP230 mice. Our data demonstrate that combustion-generated, EPFR-containing PM directly induced the maturation of DCs in an uptake-dependent and oxidative stress - dependent manner. Furthermore, EPFR-containing PM induced a Th17-biased phenotype in lung, accompanied by significant pulmonary neutrophilia. Exposure to EPFR-containing PM may constitute an important and unrecognized risk factor in the exacerbation and development of a severe asthma phenotype in humans

    Crawling with virus: Translational insights from a neonatal mouse model on the pathogenesis of respiratory syncytial virus in infants

    Get PDF
    © 2015, American Society for Microbiology. The infant immune response to respiratory syncytial virus (RSV) remains incompletely understood. Here we review the use of a neonatal mouse model of RSV infection to mimic severe infection in human infants. We describe numerous age-specific responses, organized by cell type, observed in RSV-infected neonatal mice and draw comparisons (when possible) to human infants

    Maternal exposure to combustion generated PM inhibits pulmonary Th1 maturation and concomitantly enhances postnatal asthma development in offspring

    Get PDF
    BACKGROUND: Epidemiological studies suggest that maternal exposure to environmental hazards, such as particulate matter, is associated with increased incidence of asthma in childhood. We hypothesized that maternal exposure to combustion derived ultrafine particles containing persistent free radicals (MCP230) disrupts the development of the infant immune system and results in aberrant immune responses to allergens and enhances asthma severity. METHODS: Pregnant C57/BL6 mice received MCP230 or saline by oropharyngeal aspiration on gestational days 10 and 17. Three days after the second administration, blood was collected from MCP230 or saline treated dams and 8-isoprostanes in the serum were measured to assess maternal oxidative stress. Pulmonary T cell populations were assayed in the infant mice at six days, three and six weeks of postnatal age. When the infant mice matured to adults (i.e. six weeks of age), an asthma model was established with ovalbumin (OVA). Airway inflammation, mucus production and airway hyperresponsiveness were then examined. RESULTS: Maternal exposure to MCP230 induced systemic oxidative stress. The development of pulmonary T helper (Th1/Th2/Th17) and T regulatory (Treg) cells were inhibited in the infant offspring from MCP230-exposed dams. As the offspring matured, the development of Th2 and Treg cells recovered and eventually became equivalent to that of offspring from non-exposed dams. However, Th1 and Th17 cells remained attenuated through 6 weeks of age. Following OVA sensitization and challenge, mice from MCP230-exposed dams exhibited greater airway hyperresponsiveness, eosinophilia and pulmonary Th2 responses compared to offspring from non-exposed dams. CONCLUSIONS: Our data suggest that maternal exposure to MCP230 enhances postnatal asthma development in mice, which might be related to the inhibition of pulmonary Th1 maturation and systemic oxidative stress in the dams

    Particulate Matter Containing Environmentally Persistent Free Radicals and Adverse Infant Respiratory Health Effects: A Review

    Get PDF
    The health impacts of airborne particulate matter (PM) are of global concern, and the direct implications to the development/exacerbation of lung disease are immediately obvious. Most studies to date have sought to understand mechanisms associated with PM exposure in adults/adult animal models; however, infants are also at significant risk for exposure. Infants are affected differently than adults due to drastic immaturities, both physiologically and immunologically, and it is becoming apparent that they represent a critically understudied population. Highlighting our work funded by the ONES award, in this review we argue the understated importance of utilizing infant models to truly understand the etiology of PM-induced predisposition to severe, persistent lung disease. We also touch upon various mechanisms of PM-mediated respiratory damage, with a focus on the emerging importance of environmentally persistent free radicals (EPFRs) ubiquitously present in combustion-derived PM. In conclusion, we briefly comment on strengths/challenges facing current PM research, while giving perspective on how we may address these challenges in the future. © 2012 Wiley Periodicals, Inc

    Impaired gamma delta T cell-derived IL-17A and inflammasome activation during early respiratory syncytial virus infection in infants

    Get PDF
    © 2015 Australasian Society for Immunology Inc. Respiratory syncytial virus (RSV) infection remains a significant global health burden disproportionately affecting infants and leading to long-term lung disease. Interleukin (IL)-17A has been shown to be involved in regulating viral and allergic lung inflammatory responses, which has led to a more recent interest in its role in RSV infection. Using a neonatal mouse model of RSV, we demonstrate that neonates fail to develop IL-17A responses compared with adult mice; the main immediate IL-17A contributor in adults were γδ T cells. Antibody neutralization of IL-17A in adult mice caused increased lung inflammation and airway mucus from RSV, whereas exogenous IL-17A administration to RSV-infected neonates caused decreased inflammation but no change in airway mucus. We also observed a lack of pro-inflammatory cytokine production (IL-1β, IL-6) from infected neonates. Using human cord blood mononuclear cells (CBMCs) and adult peripheral blood mononuclear cells (PBMCs), we compared inflammasome activation by direct retinoic acid-inducible gene I agonism; CBMCs failed to induce pro-inflammatory cytokines or IL-17A+γδ T cells compared with PBMCs. Our results indicate that RSV disease severity is in part mediated by a lack of inflammasome activation and IL-17A production in neonates

    Building a better neonatal mouse model to understand infant respiratory syncytial virus disease

    Get PDF
    © 2015 You et al. Background: Respiratory syncytial virus (RSV) is the number one cause of lower respiratory tract infection in infants; and severe RSV infection in infants is associated with asthma development. Today, there are still no vaccines or specific antiviral therapies against RSV. The mechanisms of RSV pathogenesis in infants remain elusive. This is partly due to the fact that the largely-used mouse model is semi-permissive for RSV. The present study sought to determine if a better neonatal mouse model of RSV infection could be obtained using a chimeric virus in which the F protein of A2 strain was replaced with the F protein from the line 19 clinical isolate (rA2-19F). Methods: Five-day-old pups were infected with the standard laboratory strain A2 or rA2-19F and various immunological and pathophysiological parameters were measured at different time points post infection, including lung histology, bronchoalveolar lavage fluid (BALF) cellularity and cytokines, pulmonary T cell profile, and lung viral load. A cohort of infected neonates were allowed to mature to adulthood and reinfected. Pulmonary function, BALF cellularity and cytokines, and T cell profiles were measured at 6 days post reinfection. Results: The rA2-19F strain in neonatal mice caused substantial lung pathology including interstitial inflammation and airway mucus production, while A2 caused minimal inflammation and mucus production. Pulmonary inflammation was characterized by enhanced Th2 and reduced Th1 and effector CD8+ T cells compared to A2. As with primary infection, reinfection with rA2-19F induced similar but exaggerated Th2 and reduced Th1 and effector CD8+ T cell responses. These immune responses were associated with increased airway hyperreactivity, mucus hyperproduction and eosinophilia that was greater than that observed with A2 reinfection. Pulmonary viral load during primary infection was higher with rA2-19F than A2. Conclusions: Therefore, rA2-19F caused enhanced lung pathology and Th2 and reduced effector CD8+ T cell responses compared to A2 during initial infection in neonatal mice and these responses were exacerbated upon reinfection. The exact mechanism is unknown but appears to be associated with increased pulmonary viral load in rA2-19F vs. A2 infected neonatal lungs. The rA2-19F strain represents a better neonatal mouse model of RSV infection

    Gastos no deducibles y su efecto en el impuesto a la renta de las empresas del sector ferretero, Carabayllo 2020

    Get PDF
    La presente investigación tiene como objetivo determinar el efecto de los gastos no deducibles en el impuesto a la renta de las empresas del sector ferretero, Carabayllo, 2020. La metodología de la investigación es de tipo aplicada, el diseño no experimental transversal – descriptiva, correlacional causal, para la recolección de datos, se utilizó el cuestionario como instrumento y como técnica la encuesta, el cual fue validado por los jueces expertos, para medir la confiabilidad se utilizó el alfa de Cronbach. Para validación de la hipótesis, se aplicó la prueba del Chi – cuadrado (x 2 ), el cual nos demostró que existe efecto entre las dos variables. Y posteriormente se utilizó la prueba ETA para medir el grado de dependencia de las variables de estudio. Finalmente, con los resultados se puede concluir que la mala determinación de los gastos no deducibles, tendrá un alto efecto en la determinación del impuesto a la renta

    Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased asthma risk/exacerbation in children and infants is associated with exposure to elevated levels of ultrafine particulate matter (PM). The presence of a newly realized class of pollutants, environmentally persistent free radicals (EPFRs), in PM from combustion sources suggests a potentially unrecognized risk factor for the development and/or exacerbation of asthma.</p> <p>Methods</p> <p>Neonatal rats (7-days of age) were exposed to EPFR-containing combustion generated ultrafine particles (CGUFP), non-EPFR containing CGUFP, or air for 20 minutes per day for one week. Pulmonary function was assessed in exposed rats and age matched controls. Lavage fluid was isolated and assayed for cellularity and cytokines and <it>in vivo </it>indicators of oxidative stress. Pulmonary histopathology and characterization of differential protein expression in lung homogenates was also performed.</p> <p>Results</p> <p>Neonates exposed to EPFR-containing CGUFP developed significant pulmonary inflammation, and airway hyperreactivity. This correlated with increased levels of oxidative stress in the lungs. Using differential two-dimensional electrophoresis, we identified 16 differentially expressed proteins between control and CGUFP exposed groups. In the rats exposed to EPFR-containing CGUFP; peroxiredoxin-6, cofilin1, and annexin A8 were upregulated.</p> <p>Conclusions</p> <p>Exposure of neonates to EPFR-containing CGUFP induced pulmonary oxidative stress and lung dysfunction. This correlated with alterations in the expression of various proteins associated with the response to oxidative stress and the regulation of glucocorticoid receptor translocation in T lymphocytes.</p

    Chronic alcohol induces M2 polarization enhancing pulmonary disease caused by exposure to particulate air pollution

    Get PDF
    Background: Chronic alcohol consumption causes persistent oxidative stress in the lung, leading to impaired alveolar macrophage (AM) function and impaired immune responses. AMs play a critical role in protecting the lung from particulate matter (PM) inhalation by removing particulates from the airway and secreting factors which mediate airway repair. We hypothesized AM dysfunction caused by chronic alcohol consumption increases the severity of injury caused by PM inhalation. Methods: Age- and sex-matched C57BL/6 mice were fed the Lieber-DeCarli liquid diet containing either alcohol or an isocaloric substitution (control diet) for 8 weeks. Mice from both diet groups were exposed to combustion-derived PM (CDPM) for the final 2 weeks. AM number, maturation, and polarization status were assessed by flow cytometry. Noninvasive and invasive strategies were used to assess pulmonary function and correlated with histomorphological assessments of airway structure and matrix deposition. Results: Co-exposure to alcohol and CDPM decreased AM number and maturation status (CD11c expression), while increasing markers of M2 activation (interleukin [IL]-4Rα, Ym1, Fizz1 expression, and IL-10 and transforming growth factor [TGF]-β production). Changes in AM function were accompanied by decreased airway compliance and increased elastance. Altered lung function was attributable to elevated collagen content localized to the small airways and loss of alveolar integrity. Intranasal administration of neutralizing antibody to TGF-β during the CDPM exposure period improved changes in airway compliance and elastance, while reducing collagen content caused by co-exposure. Conclusions: Combustion-derived PM inhalation causes enhanced disease severity in the alcoholic lung by stimulating the release of latent TGF-β stores in AMs. The combinatorial effect of elevated TGF-β, M2 polarization of AMs, and increased oxidative stress impairs pulmonary function by increasing airway collagen content and compromising alveolar integrity. © 2013 by the Research Society on Alcoholism

    Plasma biomarker analysis in pediatric ARDS: Generating future framework from a pilot randomized control trial of methylprednisolone: A framework for identifying plasma biomarkers related to clinical outcomes in pediatric ARDS

    Get PDF
    © 2016 Kimura, Saravia, Rovnaghi, Meduri, Schwingshackl, Cormier and Anand. Objective: Lung injury activates multiple pro-inflammatory pathways, including neutrophils, epithelial, and endothelial injury, and coagulation factors leading to acute respiratory distress syndrome (ARDS). Low-dose methylprednisolone therapy (MPT) improved oxygenation and ventilation in early pediatric ARDS without altering duration of mechanical ventilation or mortality. We evaluated the effects of MPT on biomarkers of endothelial [Ang-2 and soluble intercellular adhesion molecule-1 (sICAM-1)] or epithelial [soluble receptor for activated glycation end products (sRAGE)] injury, neutrophil activation [matrix metalloproteinase-8 (MMP-8)], and coagulation (plasminogen activator inhibitor-1). Design: Double-blind, placebo-controlled randomized trial. Setting: Tertiary-care pediatric intensive care unit (ICU). Patients: Mechanically ventilated children (0-18 years) with early ARDS. Interventions: Blood samples were collected on days 0 (before MPT), 7, and 14 during low-dose MPT (n = 17) vs. placebo (n = 18) therapy. The MPT group received a 2-mg/kg loading dose followed by 1 mg/kg/day continuous infusions from days 1 to 7, tapered off over 7 days; placebo group received equivalent amounts of 0.9% saline. We analyzed plasma samples using a multiplex assay for five biomarkers of ARDS. Multiple regression models were constructed to predict associations between changes in biomarkers and the clinical outcomes reported earlier, including P/F ratio on days 8 and 9, plateau pressure on days 1 and 2, PaCO 2 on days 2 and 3, racemic epinephrine following extubation, and supplemental oxygen at ICU discharge. Results: No differences occurred in biomarker concentrations between the groups on day 0. On day 7, reduction in MMP-8 levels (p = 0.0016) occurred in the MPT group, whereas increases in sICAM-1 levels (p = 0.0005) occurred in the placebo group (no increases in sICAM-1 in the MPT group). sRAGE levels decreased in both MPT and placebo groups (p \u3c 0.0001) from day 0 to day 7. On day 7, sRAGE levels were positively correlated with MPT group PaO 2 /FiO 2 ratios on day 8 (r = 0.93, p = 0.024). O 2 requirements at ICU transfer positively correlated with day 7 MMP-8 (r = 0.85, p = 0.016) and Ang-2 levels (r = 0.79, p = 0.036) in the placebo group and inversely correlated with day 7 sICAM-1 levels (r = -0.91, p = 0.005) in the MPT group. Conclusion: Biomarkers selected from endothelial, epithelial, or intravascular factors can be correlated with clinical endpoints in pediatric ARDS. For example, MPT could reduce neutrophil activation ([downwards double arrow]MMP-8), decrease endothelial injury (⇔sICAM-1), and allow epithelial recovery ([downwards double arrow]sRAGE). Large ARDS clinical trials should develop similar frameworks
    corecore