5 research outputs found

    Case Report: Longitudinal follow-up and testicular sperm extraction in a patient with a pathogenic NR5A1 (SF-1) frameshift variant: p.(Phe70Serfs*5)

    Get PDF
    BackgroundSteroidogenic factor 1 (SF-1), encoded by the nuclear receptor subfamily 5 group A member 1 (NR5A1) gene, is a transcriptional factor crucial for adrenal and gonadal organogenesis. Pathogenic variants of NR5A1 are responsible for a wide spectrum of phenotypes with autosomal dominant inheritance including disorders of sex development and oligospermia–azoospermia in 46,XY adults. Preservation of fertility remains challenging in these patients.ObjectiveThe aim was to offer fertility preservation at the end of puberty in an NR5A1 mutated patient.Case reportThe patient was born of non-consanguineous parents, with a disorder of sex development, a small genital bud, perineal hypospadias, and gonads in the left labioscrotal fold and the right inguinal region. Neither uterus nor vagina was detected. The karyotype was 46,XY. Anti-Müllerian hormone (AMH) and testosterone levels were low, indicating testicular dysgenesis. The child was raised as a boy. At 9 years old, he presented with precocious puberty treated by triptorelin. At puberty, follicle-stimulating hormone (FSH), luteinising hormone (LH), and testosterone levels increased, whereas AMH, inhibin B, and testicular volume were low, suggesting an impaired Sertoli cell function and a partially preserved Leydig cell function. A genetic study performed at almost 15 years old identified the new frameshift variant NM_004959.5: c.207del p.(Phe70Serfs*5) at a heterozygous state. He was thus addressed for fertility preservation. No sperm cells could be retrieved from three semen collections between the ages of 16 years 4 months and 16 years 10 months. A conventional bilateral testicular biopsy and testicular sperm extraction were performed at 17 years 10 months of age, but no sperm cells were found. Histological analysis revealed an aspect of mosaicism with seminiferous tubules that were either atrophic, with Sertoli cells only, or presenting an arrest of spermatogenesis at the spermatocyte stage.ConclusionWe report a case with a new NR5A1 variant. The fertility preservation protocol proposed at the end of puberty did not allow any sperm retrieval for future parenthood

    Description of 22 new alpha-1 antitrypsin genetic variants

    No full text
    Abstract Alpha-1 antitrypsin deficiency is an autosomal co-dominant disorder caused by mutations of the highly polymorphic SERPINA1 gene. This genetic disorder still remains largely under-recognized and can be associated with lung and/or liver injury. The laboratory testing for this deficiency typically comprises serum alpha-1 antitrypsin quantification, phenotyping according to the isoelectric focusing pattern and genotyping if necessary. To date, more than 100 SERPINA1 variants have been described and new genetic variants are frequently discovered. Over the past 10 years, 22 new genetic variants of the SERPINA1 gene were identified in the daily practice of the University Medical laboratories of Lille and Lyon (France). Among these 22 variants, seven were Null alleles and one with a M1 migration pattern (M1Cremeaux) was considered as deficient according to the clinical and biological data and to the American College of Medical Genetics and Genomics (ACMG) criteria. Three other variants were classified as likely pathogenic, three as variants of uncertain significance while the remaining ones were assumed to be neutral. Moreover, we also identified in this study two recently described SERPINA1 deficient variants: Trento (p.Glu99Val) and SDonosti (p.Ser38Phe). The current data, together with a recent published meta-analysis, represent the most up-to-date list of SERPINA1 variants available so far
    corecore