226 research outputs found

    Nutritional management for reproductive efficiency

    Get PDF
    Nutrition influences reproductive efficiency and the survival of lambs and weaners but the costs of supplementary feeding or maintaining low stocking rates are not justified by the resulting income from higher lamb weaning rates and reduced weaner mortality. The current practice of segmenting the ewe flock using ultrasound scanning to determine the number of foetuses still results in groups of ewes with a wide range of condition scores and with widely differing nutritional requirements. This report describes an approach to precision management of pregnant ewes and weaners that is based on the e-sheep platform of technologies and uses computer-directed drafting for nutritional management of individual animals and walk-through weighing to monitor changing nutritional status. It is estimated that the cost of feeding a thousand-ewe flock can be reduced from 14,000forfeedingallanimalsto14,000 for feeding all animals to 3300 for targeted feeding of 25% of ewes requiring additional nutrition and 20% of weaners at risk of dying. The cost of the targeted feeding strategy is more than justified by the value of additional 12-month-old animals, which is $9000. The e-sheep precision nutrition system is not attractive to industry at this stage because of the cost of the e-sheep infrastructure, the perceived complexity of the technology and the requirement for further research, but it is expected to be a commercial option within three years

    Socioeconomic status, mental wellbeing and transition to secondary school: analysis of the School Health Research Network/Health Behaviour in School-aged Children survey in Wales

    Get PDF
    Young people’s wellbeing is often lowest where they assume a relatively low position within their school’s socioeconomic hierarchy, for example, among poorer children attending more affluent schools. Transition to secondary school is a period during which young people typically enter an environment which is more socio-economically diverse than their primary school. Young people joining a school with a higher socioeconomic status intake relative to their primary school may assume a relatively lowered position within their schools’ socioeconomic hierarchy, experiencing a detriment to their wellbeing as a consequence. This paper draws on data from 45,055 pupils in Years 7 and 8, from 193 secondary schools in Wales, who completed the 2017 Student Health Research Network (SHRN) Student Health and Wellbeing (SHW) Survey. Pupils reported which primary school they previously attended, and survey data on wellbeing were linked to publicly available data on the Free School Meal entitlement of schools attended. In cross-classified linear mixed-effects models, with primary and secondary school as levels, mental wellbeing varied significantly according to both primary and secondary school attended. A higher school-level deprivation was associated with worse mental wellbeing in both cases. Mental wellbeing was significantly predicted by the relative affluence of a child’s primary and secondary school, with movement to a secondary school of higher overall socioeconomic status associated with lowered wellbeing. These findings highlight transition to secondary school as a key point in which socioeconomic inequality in wellbeing ma

    Real measurements and Quantum Zeno effect

    Get PDF
    In 1977, Mishra and Sudarshan showed that an unstable particle would never be found decayed while it was continuously observed. They called this effect the quantum Zeno effect (or paradox). Later it was realized that the frequent measurements could also accelerate the decay (quantum anti-Zeno effect). In this paper we investigate the quantum Zeno effect using the definite model of the measurement. We take into account the finite duration and the finite accuracy of the measurement. A general equation for the jump probability during the measurement is derived. We find that the measurements can cause inhibition (quantum Zeno effect) or acceleration (quantum anti-Zeno effect) of the evolution, depending on the strength of the interaction with the measuring device and on the properties of the system. However, the evolution cannot be fully stopped.Comment: 3 figure

    String-localized Quantum Fields and Modular Localization

    Full text link
    We study free, covariant, quantum (Bose) fields that are associated with irreducible representations of the Poincar\'e group and localized in semi-infinite strings extending to spacelike infinity. Among these are fields that generate the irreducible representations of mass zero and infinite spin that are known to be incompatible with point-like localized fields. For the massive representation and the massless representations of finite helicity, all string-localized free fields can be written as an integral, along the string, of point-localized tensor or spinor fields. As a special case we discuss the string-localized vector fields associated with the point-like electromagnetic field and their relation to the axial gauge condition in the usual setting.Comment: minor correction

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Models for Type Ia supernovae and related astrophysical transients

    Full text link
    We give an overview of recent efforts to model Type Ia supernovae and related astrophysical transients resulting from thermonuclear explosions in white dwarfs. In particular we point out the challenges resulting from the multi-physics multi-scale nature of the problem and discuss possible numerical approaches to meet them in hydrodynamical explosion simulations and radiative transfer modeling. We give examples of how these methods are applied to several explosion scenarios that have been proposed to explain distinct subsets or, in some cases, the majority of the observed events. In case we comment on some of the successes and shortcoming of these scenarios and highlight important outstanding issues.Comment: 20 pages, 2 figures, review published in Space Science Reviews as part of the topical collection on supernovae, replacement corrects typos in the conclusions sectio

    A possible relationship between aspects of dentition and feeding in the centrarchid and anabantoid fishes

    Full text link
    Certain components of dentition — teeth on the third basibranchial in the Centrarchidae and on the parasphenoid in the anabantoids (sensu lato) — are very rare elsewhere in higher teleostean fishes. Though these basibranchial and parasphenoid teeth in the two fish groups are on opposite sides of the oral cavity, it is hypothesized that they both developed as adaptations for gripping a particular category of food items, namely strong-clawed, hard-shelled, active animals that, once within the oral cavity, would try to crawl out again. A corollary to this hypothesis is that higher teleosts with extensive dentition in the central part of the oral cavity have a grasping jaw bite, which, unlike a piercing, shearing, or crushing jaw bite, does not necessarily kill the prey that is taken into the oral cavity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42630/1/10641_2004_Article_BF00005147.pd

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore