6,010 research outputs found
Do human transposable element small RNAs serve primarily as genome defenders or genome regulators?
It is currently thought that small RNA (sRNA) based repression mechanisms are primarily employed to mitigate the mutagenic threat posed by the activity of transposable elements (TEs). This can be achieved by the sRNA guided processing of TE transcripts via Dicer-dependent (e.g., siRNA) or Dicer-independent (e.g., piRNA) mechanisms. For example, potentially active human L1 elements are silenced by mRNA cleavage induced by element encoded siRNAs, leading to a negative correlation between element mRNA and siRNA levels. On the other hand, there is emerging evidence that TE derived sRNAs can also be used to regulate the host genome. Here, we evaluated these two hypotheses for human TEs by comparing the levels of TE derived mRNA and TE sRNA across six tissues. The genome defense hypothesis predicts a negative correlation between TE mRNA and TE sRNA levels, whereas the genome regulatory hypothesis predicts a positive correlation. On average, TE mRNA and TE sRNA levels are positively correlated across human tissues. These correlations are higher than seen for human genes or for randomly permuted control data sets. Overall, Alu subfamilies show the highest positive correlations of element mRNA and sRNA levels across tissues, although a few of the youngest, and potentially most active, Alu subfamilies do show negative correlations. Thus, Alu derived sRNAs may be related to both genome regulation and genome defense. These results are inconsistent with a simple model whereby TE derived sRNAs reduce levels of standing TE mRNA via transcript cleavage, and suggest that human cells efficiently process TE transcripts into sRNA based on the available message levels. This may point to a widespread role for processed TE transcripts in genome regulation or to alternative roles of TE-to-sRNA processing including the mitigation of TE transcript cytotoxicity
A C-terminal Pfs48/45 malaria transmission-blocking vaccine candidate produced in the baculovirus expression system
This work is licensed under a Creative Commons Attribution 4.0 International License.The Plasmodium falciparum gametocyte surface protein, Pfs48/45, is a potential target for malaria transmission-blocking vaccines. However, due to its size and complexity, expression of the full-length protein has been difficult, leading to focus on the C-terminal six cysteine domain (6C) with the use of fusion proteins to facilitate expression and folding. In this study, we utilized the baculovirus system to evaluate the expression of three Pfs48/45 proteins including the full-length protein, the 6C domain fragment and the 6C domain mutant to prevent glycosylation. Expression of the recombinant Pfs48/45 proteins was conducted in super Sf9 cells combined with the use of tunicamycin to prevent N-glycosylation. The proteins were then evaluated as immunogens in mice to demonstrate the induction of functionally active polyclonal antibody responses as measured in the standard membrane feeding assay (SMFA). Only the 6C protein was found to exhibit significant transmission-reducing activity. Further characterization of the biologically active 6C protein demonstrated it was homogeneous in terms of size, charge, conformation, absence of glycosylation, and containing proper disulfide bond pairings. This study presents an alternative expression system, without the need of a fusion protein partner, for the Pfs48/45 6C protein fragment including further evaluation as a potential transmission-blocking vaccine candidate
Ambient-pressure molecular superconductor with a superlattice containing layers of tris(oxalato)rhodate enantiomers and 18-crown-6
We report a novel multilayered organic-inorganic hybrid material, β”-(BEDT-TTF)2[(H2O)(NH4)2Rh(C2O4)3].18-crown-6. This is the first molecular superconductor to have a superlattice with layers of both BEDT-TTF and 18-crown-6, and also the first with the anion tris(oxalato)rhodate. This is the 2D superconductor with the widest gap between conducting layers where only a single donor packing motif is observed (β”). The strong 2D nature of this system strong-ly suggests that the superconducting transition is a KT transition. A superconducting Tc of 2.7 K at ambient pressure was found by transport and 2.5 K by magnetic susceptibility measurements
Axion-Dilaton Cosmology and Dark Energy
We discuss a class of flat FRW cosmological models based on D=4 axion-dilaton
gravity universally coupled to cosmological background fluids. In particular,
we investigate the possibility of recurrent acceleration, which was recently
shown to be generically realized in a wide class of axion-dilaton models, but
in absence of cosmological background fluids. We observe that, once we impose
the existence of radiation -and matter- dominated earlier stages of cosmic
evolution, the axion-dilaton dynamics is altered significantly with respect to
the case of pure axion-dilaton gravity. During the matter dominated epoch the
scalar fields remain either frozen, due to the large expansion rate, or enter a
cosmological scaling regime. In both cases, oscillations of the effective
equation of state around the acceleration boundary value are impossible. Models
which enter an oscillatory stage in the low redshift regime, on the other hand,
are disfavored by observations. We also comment on the viability of the
axion-dilaton system as a candidate for dynamical dark energy. In a certain
subclass of models, an intermediate scaling regime is succeeded by eternal
acceleration. We also briefly discuss the issue of dependence on initial
conditions.Comment: 28 pages, 11 figure
The Pfs230 N-terminal fragment, Pfs230D1+: expression and characterization of a potential malaria transmission-blocking vaccine candidate
This work is licensed under a Creative Commons Attribution 4.0 International License.Background
Control and elimination of malaria can be accelerated by transmission-blocking interventions such as vaccines. A surface antigen of Plasmodium falciparum gametocytes, Pfs230, is a leading vaccine target antigen, and has recently progressed to experimental clinical trials. To support vaccine product development, an N-terminal Pfs230 antigen was designed to increase yield, as well as to improve antigen quality, integrity, and homogeneity.
Methods
A scalable baculovirus expression system was used to express the Pfs230D1+ construct (aa 552–731), which was subsequently purified and analysed. Pfs230D1+ was designed to avoid glycosylation and protease digestion, thereby potentially increasing homogeneity and stability. The resulting Pfs230D1+ protein was compared to a previous iteration of the Pfs230 N-terminal domain, Pfs230C1 (aa 443–731), through physiochemical characterization and in vivo analysis. The induction of functional antibody responses was confirmed via the standard membrane feeding assay (SMFA).
Results
Pfs230D1+ was produced and purified to an overall yield of 23 mg/L culture supernatant, a twofold yield increase over Pfs230C1. The Pfs230D1+ protein migrated as a single band via SDS-PAGE and was detected by anti-Pfs230C1 monoclonal antibodies. Evaluation by SDS-PAGE, chromatography (size-exclusion and reversed phase) and capillary isoelectric focusing demonstrated the molecule had improved homogeneity in terms of size, conformation, and charge. Intact mass spectrometry confirmed its molecular weight and that it was free of glycosylation, a key difference to the prior Pfs230C1 protein. The correct formation of the two intramolecular disulfide bonds was initially inferred by binding of a conformation specific monoclonal antibody and directly confirmed by LC/MS and peptide mapping. When injected into mice the Pfs230D1+ protein elicited antibodies that demonstrated transmission-reducing activity, via SMFA, comparable to Pfs230C1.
Conclusion
By elimination of an O-glycosylation site, a potential N-glycosylation site, and two proteolytic cleavage sites, an improved N-terminal Pfs230 fragment was produced, termed D1+, which is non-glycosylated, homogeneous, and biologically active. An intact protein at higher yield than that previously observed for the Pfs230C1 fragment was achieved. The results indicate that Pfs230D1+ protein produced in the baculovirus expression system is an attractive antigen for transmission-blocking vaccine development
Performance limits due to thermal transport in graphene single-photon bolometers
In high-sensitivity bolometers and calorimeters, the photon absorption often
occurs at a finite distance from the temperature sensor to accommodate antennas
or avoid the degradation of superconducting circuitry exposed to radiation. As
a result, thermal propagation from the input to the temperature readout can
critically affect detector performance. In this report we model the performance
of a graphene bolometer, accounting for electronic thermal diffusion and
dissipation via electron-phonon coupling at low temperatures in three regimes:
clean, supercollision, and resonant scattering. Our results affirm the
feasibility of a superconducting readout without Cooper-pair breaking by mid-
and near-infrared photons, and provide a recipe for designing graphene
absorbers for calorimetric single-photon detectors. We investigate the tradeoff
between the input-readout distance and detector efficiency, and predict an
intrinsic timing jitter of ~2.7 ps. Based on our result, we propose a
spatial-mode-resolving photon detector to increase communication bandwidth
Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays
BACKGROUND: Tissue microarrays (TMAs) have become a valuable resource for biomarker expression in translational research. Immunohistochemical (IHC) assessment of TMAs is the principal method for analysing large numbers of patient samples, but manual IHC assessment of TMAs remains a challenging and laborious task. With advances in image analysis, computer-generated analyses of TMAs have the potential to lessen the burden of expert pathologist review. METHODS: In current commercial software computerised oestrogen receptor (ER) scoring relies on tumour localisation in the form of hand-drawn annotations. In this study, tumour localisation for ER scoring was evaluated comparing computer-generated segmentation masks with those of two specialist breast pathologists. Automatically and manually obtained segmentation masks were used to obtain IHC scores for thirty-two ER-stained invasive breast cancer TMA samples using FDA-approved IHC scoring software. RESULTS: Although pixel-level comparisons showed lower agreement between automated and manual segmentation masks (κ=0.81) than between pathologists' masks (κ=0.91), this had little impact on computed IHC scores (Allred; [Image: see text]=0.91, Quickscore; [Image: see text]=0.92). CONCLUSIONS: The proposed automated system provides consistent measurements thus ensuring standardisation, and shows promise for increasing IHC analysis of nuclear staining in TMAs from large clinical trials
An Unusual Presentation of Pigmented Purpuric Lichenoid Dermatitis
Pigmented purpuric lichenoid dermatitis (PPLD) is a rare subtype of pigmented purpuric dermatosis, which classically presents with a mixture of lichenoid papules and patches on the bilateral lower extremities. Herein, we describe an unusual case of a 47-year-old man with PPLD who presented with 1-3mm discrete papules without the presence of larger patches. The diagnosis of PPLD should be considered for patients presenting with bilateral symmetric discrete papules on the legs
- …