3,232 research outputs found
Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium
The human intestinal cell lines: Caco-2 and HT29-MTX cells have been used extensively in 2D and 3D cell cultures as simple models of the small intestinal epithelium in vitro. This study aimed to investigate the potential of three hydrogel scaffolds to support the 3D culture of Caco-2 and HT29-MTX cells and critically assess their use as scaffolds to stimulate villi formation to model a small intestinal epithelium in vitro. Here, alginate, l-pNIPAM, and l-pNIPAM-co-DMAc hydrogels were investigated. The cells were suspended within or layered on these hydrogels and maintained under static or dynamic culture conditions for up to 21days. Caco-2 cell viability was increased when layered on the synthetic hydrogel scaffolds, but reduced when suspended within the synthetic hydrogels. In contrast, HT29-MTX cells remained viable when suspended within or layered on all 3D cultures. Interestingly, cells cultured in and on the alginate hydrogel scaffolds formed multilayer spheroid structures, whilst the cells layered on synthetic hydrogels formed villus-like structures. Immunohistochemistry staining demonstrated positive expression of enterocyte differentiation markers and goblet cell marker. In conclusion, l-pNIPAM hydrogel scaffolds supported both cell lines and induced formation of villus-like structures when cells were layered on and cultured under dynamic conditions. The ability of the l-pNIPAM to recapitulate the 3D structure and differentiate main cell types of human intestinal villi may deliver a potential alternative in vitro model for studying intestinal disease and for drug testing. Forty percent of hospital referrals are linked to disorders of the digestive tract. Current studies have utilised animal models or simple cultures of isolated cells which do not behave in the same manner as human intestine. Thus new models are required which more closely mimic the behaviour of intestinal cells. Here, we tested a number of scaffolds and conditions to develop a cell culture model which closely represents the 3D environment seen within the human small intestine. We successfully created structures seen within the intestine which have not previously been possible with other culture models. These models could be used to investigate tissue engineering, drug discovery, and used asan alternative to in vivo animal models in drug toxicity studies. [Abstract copyright: Copyright © 2017. Published by Elsevier Ltd.
Dangerous Speech: A Cross-Cultural Study of Dehumanization and Revenge
Dehumanization is routinely invoked in social science and law as the primary factor in explaining how propaganda encourages support for, or participation in, violence against targeted outgroups. Yet the primacy of dehumanization is increasingly challenged by the apparent influence of revenge on collective violence. This study examines critically how various propaganda influence audiences. Although previous research stresses the dangers of dehumanizing propaganda, a recently published study found that only revenge propaganda significantly lowered outgroup empathy. Given the importance of these findings for law and the behavioral sciences, this research augments that recent study with two additional samples that were culturally distinct from the prior findings, showing again that only revenge propaganda was significant. To explore this effect further, we also conducted a facial electromyography (fEMG) among a small set of participants, finding that revenge triggered significantly stronger negative emotions against outgroups than dehumanization
Urinary eicosanoid metabolites in HIV-infected women with central obesity switching to raltegravir: an analysis from the women, integrase, and fat accumulation trial.
Chronic inflammation is a hallmark of HIV infection. Eicosanoids reflect inflammation, oxidant stress, and vascular health and vary by sex and metabolic parameters. Raltegravir (RAL) is an HIV-1 integrase inhibitor that may have limited metabolic effects. We assessed urinary F2-isoprostanes (F2-IsoPs), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB2) in HIV-infected women switching to RAL-containing antiretroviral therapy (ART). Thirty-seven women (RAL = 17; PI/NNRTI = 20) with a median age of 43 years and BMI 32 kg/m(2) completed week 24. TxB2 increased in the RAL versus PI/NNRTI arm (+0.09 versus -0.02; P = 0.06). Baseline PGI-M was lower in the RAL arm (P = 0.005); no other between-arm cross-sectional differences were observed. In the PI/NNRTI arm, 24-week visceral adipose tissue change correlated with PGI-M (rho = 0.45; P = 0.04) and TxB2 (rho = 0.44; P = 0.005) changes, with a trend seen for PGE-M (rho = 0.41; P = 0.07). In an adjusted model, age ≥ 50 years (N = 8) was associated with increased PGE-M (P = 0.04). In this randomized trial, a switch to RAL did not significantly affect urinary eicosanoids over 24 weeks. In women continuing PI/NNRTI, increased visceral adipose tissue correlated with increased PGI-M and PGE-M. Older age (≥ 50) was associated with increased PGE-M. Relationships between aging, adiposity, ART, and eicosanoids during HIV-infection require further study
Precision timing of PSR J1012+5307 and strong-field GR tests
We report on the high precision timing analysis of the pulsar-white dwarf
binary PSR J1012+5307. Using 15 years of multi-telescope data from the European
Pulsar Timing Array (EPTA) network, a significant measurement of the variation
of the orbital period is obtained. Using this ideal strong-field gravity
laboratory we derive theory independent limits for both the dipole radiation
and the variation of the gravitational constant.Comment: 3 pages, Proceedings of the 12th Marcel Grossmann Meeting on General
Relativity (MG 12
A Nonword Repetition Task for Speakers with Misarticulations: The Syllable Repetition Task (SRT)
Purpose. Conceptual and methodological confounds occur when non(sense) repetition tasks are administered to speakers who do not have the target speech sounds in their phonetic inventories or who habitually misarticulate targeted speech sounds. We describe a nonword repetition task, the Syllable Repetiton Task (SRT) that eliminates this confound and report findings from three validity studies. Method. Ninety-five preschool children with Speech Delay and 63 with Typical Speech, completed an assessment battery that included the Nonword Repetition Task (NRT: Dollaghan & Campbell, 1998) and the SRT. SRT stimuli include only four of the earliest occurring consonants and one early occurring vowel. Results. Study 1 findings indicated that the SRT eliminated the speech confound in nonword testing with speakers who misarticulate. Study 2 findings indicated that the accuracy of the SRT to identify expressive language impairment was comparable to findings for the NRT. Study 3 findings illustrated the SRT’s potential to interrogate speech processing constraints underlying poor nonword repetition accuracy. Results supported both memorial and auditory-perceptual encoding constraints underlying nonword repetition errors in children with speech-language impairment. Conclusion. The SRT appears to be a psychometrically stable and substantively informative nonword repetition task for emerging genetic and other research with speakers who misarticulate
Differential effects of polyphenols on proliferation and apoptosis in human myeloid and lymphoid leukemia cell lines.
Background: Mortality rates for leukemia are high despite considerable improvements in treatment. Since polyphenols exert pro-apoptotic effects in solid tumors, our study investigated the effects of polyphenols in haematological malignancies. The effect of eight polyphenols (quercetin, chrysin, apigenin, emodin, aloe-emodin, rhein, cis-stilbene and trans-stilbene) were studied on cell proliferation, cell cycle and apoptosis in four lymphoid and four myeloid leukemic cells lines, together with normal haematopoietic control cells. Methods: Cellular proliferation was measured by CellTiter-Glo® luminescent assay; and cell cycle arrest was assessed using flow cytometry of propidium iodide stained cells. Apoptosis was investigated by caspase-3 activity assay using flow cytometry and apoptotic morphology was confirmed by Hoescht 33342 staining. Results: Emodin, quercetin, and cis-stilbene were the most effective polyphenols at decreasing cell viability (IC50 values of 5-22 µM, 8-33 µM, and 25-85 µM respectively) and inducing apoptosis (AP50 values (the concentration which 50% of cells undergo apoptosis) of 2-27 µM, 19-50 µM, and 8-50 µM respectively). Generally, lymphoid cell lines were more sensitive to polyphenol treatment compared to myeloid cell lines, however the most resistant myeloid (KG-1a and K562) cell lines were still found to respond to emodin and quercetin treatment at low micromolar levels. Non-tumor cells were less sensitive to all polyphenols compared to the leukemia cells. Conclusions: These findings suggest that polyphenols have anti-tumor activity against leukemia cells with differential effects. Importantly, the differential sensitivity of emodin, quercetin, and cis-stilbene between leukemia and normal cells suggests that polyphenols are potential therapeutic agents for leukemia
The Impact of Coronavirus Disease 2019 (COVID-19) on Graduate Medical Education (GME): An Exploration of Behavioral Health Aspects
The Coronavirus Disease 2019, regularly referred to as “COVID-19”, has had an unprecedented impact on not only the state of graduate medical education (GME) for post-doctoral trainees, but also their well-being and welfare. Trainees comprise approximately 14% of physicians in the United States. This crucial portion of personnel in healthcare has irrefutably represented the resilience that personifies the medical community. The prevalence of physical and emotional exertion by these trainees, necessitated by the pandemic, has precipitated behavioral health ailments like mood disorders including depression and anxiety, diminished satisfaction in their corresponding specialties and impaired their ability to achieve balance between professional and personal responsibilities. This excerpt examines the pervasiveness of the adverse psychosocial implications the COVID-19 pandemic has had on this susceptible practitioner population in addition to the examination of physical and emotional exhaustion that exacerbate physician burnout including the implementation of policies and procedures to address the emergent problem of physician burnout throughout the COVID-19 pandemic by the GME. Also, this excerpt examines the adaptation of GME, including the reformation and implementation of innovative policies and procedures that has incontestably created an imprint on medical education for descendants of ACGME residency and fellowship programs in the United States
Phylogenetic Analysis of Cellulolytic Enzyme Genes from Representative Lineages of Termites and a Related Cockroach
The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has proven difficult to establish these symbionts in pure culture. The trends in lignocellulose degradation during the evolution of the host lineage are also largely unknown. To clarify these points without any cultivation technique, we performed meta-expressed sequence tag (EST) analysis of cDNA libraries originating from symbiotic protistan communities in four termite species and a wood-feeding cockroach. Our results reveal the establishment of a degradation system with multiple enzymes at the ancestral stage of termite-protistan symbiosis, especially GHF5 and 7. According to our phylogenetic analyses, the enzymes comprising the protistan lignocellulose degradation system are coded not only by genes innate to the protists, but also genes acquired by the protists via lateral transfer from bacteria. This gives us a fresh perspective from which to understand the evolutionary dynamics of symbiosis
The effect of apigenin and chemotherapy combination treatments on apoptosis-related genes and proteins in acute leukaemia cell lines
Abstract: Apigenin is a dietary polyphenol found abundantly in fruit and vegetables, which sensitizes leukaemia cells to topoisomerase inhibitor agents (e.g., etoposide), and alkylating agents (e.g., cyclophosphamide), reducing ATP levels and inducing apoptosis; whilst being protective to control haematopoietic stem cells. This study analysed the expression profiles of intrinsic and extrinsic apoptosis-related genes and proteins to help elucidate the mechanisms of action of apigenin when used in combination with etoposide or cyclophosphamide in lymphoid and myeloid leukaemia cell lines (Jurkat and THP-1). Expression of apoptosis-related genes were measured using a TaqMan® Human Apoptosis Array and the StepOne Plus RT-qPCR System, whilst apoptosis-related proteins were determined using a protein profiler™-human apoptosis array and the LI-COR OdysseyR Infrared Imaging System. Apigenin when combined with etoposide or cyclophosphamide-induced apoptosis via the mitochondrial pathway, increasing the expression of pro-apoptotic cytochrome c, SMAC/DIABLO, and HTRA2/OMI, which promoted caspase-9 and -3 activation. Targeting anti-apoptotic and/or pro-apoptotic members of the apoptotic pathways is a promising strategy to induce cancer cell death and improve sensitivity to chemotherapy agents. Here the apoptotic pathways induced by apigenin in combination with etoposide or cyclophosphamide were identified within human leukaemia cell lines, such applications could provide combination therapies for the treatment of leukaemia
- …